10 years of Mapping for Change

November 24 marks 10 years since Louise Francs, Chris Church and myself set up Mapping for Change. It’s a proud moment when the social enterprise that was set out of a research project at UCL is now well established, and the work that it does is mentioned in the annual report of the Chief Medical Officer, appear in the Guardian, and develop projects in many places far from its origin in London – including in Barcelona, Katowice, Valletta, and Kampala.

Mapping for Change came out of the Higher Education Innovation Fund (HEIF) funded “Mapping Change for Sustainable Communities. Originally, we’ve approached Steve Coast and Nick Black to develop a community mapping platform, but they got busy with CloudMade and we were lucky that Claire Ellul stepped forward and developed the first version of the community mapping platform during her postdoctoral research. Claire is our unofficial co-founder and acted as technical lead for a long while. Mapping Change for Sustainable Communities was about to end in December 2008, and Louise, Chris and myself decided that we’re going to continue to utilise the platform and engagement methodologies that we’ve developed through a new organisation, so we set up Mapping for Change for this purpose. Originally, Mapping for Change was supposed to be set as a collaboration between London 21 Sustainability Network and UCL, but with the demise of London 21 in 2010, UCL became the main owner of it.

As to celebrate the 10 years, I’m picking up some activities and developments in Mapping for Change from each year, but first, I have to go back further – 14 years ago:

GreenMapMeeting20042004 – this email, from Vinciane Rycroft, at London21, who at the time developing their innovative online Green Map for London, was to establish a connection between UCL and the organisation. Following this, I learned about London 21 effort to record community-led sustainability activities across the city and represent them. The meeting in 2004 eventually led to the development of “Mapping Change for Sustainable Communities” project and the creation of Mapping for Change

2008HWCommunityMap6-Workshop-MCSC.JPG the basis for Mapping for Change was an extensive set of workshops that were carried out in different areas in East London. The image is taken from a workshop at Hackney week in March 2008, which was eventually digitised and shared on the new community mapping platform – and in this image both Louise Francis and her London 21 colleague, Colleen Whitaker, leading a participatory mapping workshop.

MfCBrochure2009 – With the first brochure and also a description of existing activities, we started securing the first projects that were paid for. These included working with different faith communities across London on sustainability issues, and also a map of food growing in Brixton (linked to the Transition Town group there). Another project started at the time was with UCL Development Planning Unit around Hackney Marshes.

 

DSC01239 (2)2010 – the official launch of Mapping for Change at UCL included an endorsement from Steve Caddick, the Vice Provost for Enterprise (in the picture on the right). We have also started working with UCL Public Engagement Unit on understanding the relationships between UCL and the local community that live around it. Most importantly, we have secured a social enterprise award from UnLtd, as part of their programme to support social enterprises in Universities. We also started to carry out air quality study in the Pepys Estate. Some of our work was covered in GIS Development.Diffusion sample3

2011 – the work on community-led air quality monitoring started to expand, with studies in Highbury and Islington. We also carried out work on mapping activities in canals and waterways and helped The Conservation Volunteers to assess their impact. As a UCL champion for social enterprise, it was possible to encourage the institution to support activities such as those of Mapping for Change in a more organised way.

2012 – the main change to the company in this year happened with the help of UCL Business, the technology transfer office of UCL (and in particular Ana Lemmo). We changed the registration to a Community Interest Company (CIC) and also made UCL the owner of the company, which made it the first CIC that is completely owned by the university.

2013 – following the transition to UCL ownership, we were selected as the social enterprise of the year. We also launched the Science in the City project in the Barbican – a year-long air pollution monitoring study in the Barbican estate in the City of London.

Street mobility toolkit2014 – Mapping for Change was used for an Impact Case Study in the research evaluation framework (REF) exercise that year. This required explaining the work that was developed in the first 5 years of operation, and in particular air quality studies. During this year, we’ve hosted Karen Martin, who carried out a participatory mapping project with people who use foodbanks (see her slides below). During this year, we also secure the first major EU research funding for our work, through the CAP4Access project, as well as UCL Street Mobility project. At the end of the year, the new database system for managing community mapping – GeoKey – was released by UCL ExCiteS and form the basis for a new Community Mapping system.

Southwark 2015 – we have started collaborating with the Engineering Exchange at UCL, and provided training in participatory and community mapping. We also released the new community mapping system – updating and replacing the software that was used from 2008. This was an extensive effort that required significant investment. The new system facilitated the creation of maps for different clients – it was possible to create a bespoke front page for Eco21 in Poland and other organisations. At the end of the year, we carried out a crowdfunding campaign to raise funding to support community-led air quality projects (see also here). We also helped the London Borough of Southwark to carry out a consultation on its development plan. You can also find notes from a talk at the Building Centre on Mapping for Change activities.

2016  – the year started with the launch of a new Horizon2020 project, WeGovNow! which is now its last stages. With the growing concern by the communities around UCL on the health impacts of HS2 development, we collaborated with a visiting researcher (Irene Eleta) on understanding the interactions between researchers and communities on air quality projects. We also had our first contract with the University of Malta and providing them with a platform for community mapping that they can use for different projects.

Participatory Mapping Methodology2017 – 10 years after it was originally developed, the participatory methodology that we use is published in the Routledge book of Environmental Justice, another major change happened in the late part of the year, with the office of Mapping for Change relocating to Mildmay Community Centre in Islington. This was, in some way, a close of a circle, since in 2008 when we just started, working with the project Citizens Science for Sustainability (SuScit) which was running in Mildmay was considering the use of community maps, and in 2012 Cindy Regalado carried out one of her playshops in the community centre as part of her research in ExCiteS.

2018 – Mapping for Change is now well established, and running multiple projects – maintaining the online maps, participating in Horizon 2020 projects – a new one, D-Noses, just begun, and being invited to participate in tenders and proposals. Nowadays, I actually know that I don’t know about many of the interesting projects that are happening. It operates in synergy with the work of the UCL Extreme Citizen Science group and continues to grow. It is a successful example of a knowledge-based social enterprise.

There were many people that helped Mapping for Change, worked or volunteered on the many projects that were carried out over the years – and this is an opportunity to thank all of them!

Advertisements

New publication: Participatory citizen science

I’ve mentioned in the previous posts about the introduction and conclusions chapters in the book “Citizen Science: Innovation in Open Science, Society and Policy” and the chapter about citizen science in universities. The final chapter in the book that I would like to highlight is my chapter “participatory citizen science“. As Rick Bonney pointed to me, on the face of it, this title sounds like a pointless repetition because all citizen science is participatory science by definition, and therefore this title can be translated to “participatory participatory science” – which doesn’t make much sense…

However, I contend that it does make sense because the issue of participation in citizen science and “what exactly the word participation mean?” is not that simple to answer. A good demonstration the fact that participation is not that simple is provided through to frequent references to Arnstein ladder of citizen participation in the literature on citizen science. It is something that I have been exploring in various papers and in my research. The chapter itself is a polished, peer-reviewed, version of my keynote from the ECSA 2016 conference (and the blog that accompanied it). It is an investigation into the meaning of participation and starting to answer who participate and how they participate. The chapter leads towards a 2×2 typology of the type of participants and the depth of engagement across projects.

The highlights of the chapter are:

  • Common conceptualisations of participation assume high-level participation is good and low-level participation is bad. However, examining participation in terms of high and low levels of knowledge and engagement reveals different types of value in each case.
  • The spectrum of citizen science activities means some are suitable for people who have education and knowledge equivalent to PhD level, while some are aimed at non-literate participants. There are also activities suitable for micro-engagement, and others requiring deep engagement over time.
  • Issues of power, exploitation and commitment to engagement need to be explored for each citizen science project, as called for by the ECSA Ten Principles of Citizen Science, in response to the need for a more nuanced view that allows different activities to emerge

You can find the chapter here.

Table of High and low engagement and skills from the chapter

How many citizen scientists in the world?

Since the development of the proposal for the Doing It Together Science project (DITOs), I have been using the “DITOs escalator” model to express the different levels of engagement in science, while also demonstrating that the higher level have fewer participants, which mean that there is a potential for people to move between levels of engagement – sometime towards deeper engagement, and sometime towards lighter one according to life stages, family commitments, etc. This is what the escalator, after several revisions, look like:

DitosEscalator7

I have an ongoing interest in participation inequality (the observation that very few participants are doing most of the work) and the way it plays out and influences citizen science projects. When you start attaching numbers to the different levels of public engagement in science, participation inequality is appearing in this area, too. Since writing the proposal in 2015, I have been looking for indications that will support the estimation of the number of participants. During the process of working on a paper that uses the escalator, I’ve done the research to identify sources of information to support these estimations. While the paper is starting its peer review journey, I am putting out the part that relates to these numbers so this part can get open peer review here. I have decided to use 2017 as a recent year for which we can carry out the analysis. As for geographical scale, I’m using the United Kingdom as a country with very active citizen science community as my starting point.

At the bottom of the escalator, Level 1 considers the whole population, about 65 million people. Because of the impact of science across society, the vast majority, if not all, will have some exposure to science – even if this is only in the form of medical encounters.

However, the bare minimum of engagement is to passively consume information about science through newspapers, websites, and TV and Radio programme (Level 2). We can gauge the number of people at this level from the BBC programmes Blue Planet II and Planet Earth II, both focusing on natural history, with viewing figures of 14 million and about 10 million, respectively. We can, therefore, estimate these “passive consumers” at about 25% of the population.

At the next level is active consumption of science – such as visits to London’s Science Museum (UK visitors in 2017 – about 1.3), or the Natural History Museum (UK visitors in 2017 – about 2.1m), so an estimation of participation at 10% of the population seem justified.

Next, we can look at active engagement in citizen science but to a limited degree. Here, the Royal Society for the Protection of Birds (RSPB) annual Big Garden Birdwatch requires the participants to dedicate a single hour in the year. The project attracted about 500,000 participants in 2017, and we can, therefore, estimate participation at this level at about 1% of the population. This should also include about 170,000 people who carried out a single task on Zooniverse and other online projects.

At the fifth level, there are projects that require remote engagement, such as volunteer thinking on the Zooniverse platform, or in volunteer computing on the IBM World Community Grid (WCG), in which participants download a software on their computer to allow processing to assist scientific research. The number of participants in WCG from the UK in 2017 was about 18,000. In Zooniverse about 74,0000 people carried out more than a single task in 2017, thus estimating participation at this level at 0.1% of the population (thanks to Grant Miller, Zooniverse and Caitlin Larkin, IBM for these details).

The sixth level requires the regular data collection, such as the participation in the British Trust of Ornithology Garden Birdwatch got about 6,500 active participants in 2017 (BTO 2018), while about 5000 contributed to the biodiversity recording system iRecord (thanks to Tom August, CEH) and it will be reasonable to estimate that the participation is about 0.01% of the population.

The most engaged level include those who are engaged in DIY Science, such as exploring DIY Bio, or developing their own sensors, etc. We can estimate that it represents 0.001% of the UK population at most (thanks to Philippe Boeing & Ilia Levantis).

We can see that as the level of engagement increases, the demand from participants increase and the number of participants drops. Not that this is earth-shattering, though what is interesting is that the difference between levels is in order of magnitude. We also know that the UK enjoys all the possible benefits that are needed to foster citizen science: a long history of citizen science activities, established NGOs and academic institutions that support citizen science, good technological infrastructure (broadband, mobile phone use), well-educated population (39.1% with tertiary education), etc. So we’re talking about a best-case scenario.

It is also important, already at this point, to note that UNESCO’s estimates of the percentage of UK population who are active scientists (working in research jobs), is 0.4% which is bigger than the 0.111 for levels 5,6 and 7.  

Let’s try to extrapolate from the UK to the world.

First, how many people we can estimate to have the potential of being citizen scientists? We want them to be connected and educated, with a middle-class lifestyle that gives them leisure time for hobbies and volunteering.

The connectivity gives us a large number – according to ITU, 3.5 Billion people are using the Internet. The estimation of the size of middle-class is a bit smaller, at 3.2 Billion people.  However, we know that participants in most citizen science projects which use passive inclusiveness, where everyone is welcome without an active effort in outreach to under-represented groups, tend to be from people with higher education (a.k.a tertiary education). There is actually data about it – here is the information from Wikipedia about tertiary educational attainment. According to UNESCO’s statistics, there were over 672 million people with a form of tertiary education in 2017. Let’s say that not everyone in citizen science is with tertiary education (which is true) so our potential starting number is 1 Billion.

I’ll assume the same proportion of the UK, ignoring that it present for us the best case. So about 250 million of these are passive consumers of science (L2), and 100 million are active consumer (e.g. going to science museums) (L3). We can then have 10 million people that participate in the once a year events (L4); 1 million that are active in online citizen science (this is more than a one-off visit or trial) (L5); about 100,000 who are the committed participants (mostly nature observers) and about 10,000 DIY bio, makers, and DIY science people (L6 and L7).

Are these numbers make sense? Looking at the visits to science/natural history museums on Wikipedia, level 3 seems about right. Level 4 looks very optimistic – in addition to Big Garden Birdwatch, there were about 17,000 people participating in City Nature Challenge, and 73,000 participants in the Christmas Bird Count, and about 888,000 done a single task on Zooniverse – it looks like that a more realistic number is 3 million or 4 million. Level 5 is an underestimate – IBM Word Community Grid have 753,000 members, and there are other volunteer computing projects which will make it about 1 million, then there were about 163,000 global Zooniverse contributors (thanks to the information from Grant Miller), 130,000 Wikipedians, 50,000 active contributors in OpenStreetMap, and other online projects such as EyeWire etc. So let’s say that it’s about 1.5 Million. At level 6, again the number is about right – e.g. eBird reports 20,000 birders in their peak day. For the sake of the argument, let’s say that it’s double the number – 200,000. Level 7 also seems right, based on estimations of biohackers numbers in Europe.

Now let’s look at the number of scientists globally: in 2013 there were 7.3 million researchers worldwide. With the estimation of “serious” citizen scientists (levels 5,6 and 7) at about 1.7 million, we can see the issue of crowdsourcing here: the potential crowdsourcer community is, at the moment, much bigger than the volunteers.

Something that is important to highlight here is the amazing productivity of citizen scientists in terms of their ability to analyse, collect information, or inventing tools – we know from participation inequality that this tiny group of participants are doing a huge amount of work – the 50,000 OSM volunteers are mapping the world or the 73,000 Christmas Bird Count participants provided 56,000,000 observations or the attention impact of the Open Insulin Project. So numbers are not the only thing that we need to think about.

Moreover, this is not a reason to give up on increasing the number of citizen scientists. Look at the numbers of Google Local Guides – out of 1 Billion users, a passive crowdsourcing approach reached 50 million single time contributors, and 465,000 in the equivalent of levels 5 to 7. Therefore, citizen science has the potential of reaching much larger numbers. At the minimum, there is the large cohort of people with tertiary education, with at least 98 million people with Masters and PhD in the world.

Therefore, to enable a wider and deeper public engagement with science, apart from the obvious point of providing funding, institutional support, and frameworks to scale up citizen science, we can think of an “escalator” like process, which makes people aware of the various levels and assists them in moving up or down the engagement level. For example, due to a change in care responsibilities or life stages, people can become less active for a period of time and then chose to become more active later. With appropriate funding, support, and attention, growing the global citizen science should be possible. 

Papers from PPGIS 2017 meeting: state of the art and examples from Poland and the Czech Republic

dsc_0079About a year ago, the Adam Mickiewicz University in Poznań, Poland, hosted the PPGIS 2017 workshop (here are my notes from the first day and the second day). Today, four papers from the workshop were published in the journal Quaestiones Geographicae which was established in 1974 as an annual journal of the Faculty of Geographical and Geological Sciences at the university.

The four papers (with their abstracts) are:

Muki Haklay, Piotr Jankowski, and Zbigniew Zwoliński: SELECTED MODERN METHODS AND TOOLS FOR PUBLIC PARTICIPATION IN URBAN PLANNING – A REVIEW “The paper presents a review of contributions to the scientific discussion on modern methods and tools for public participation in urban planning. This discussion took place in Obrzycko near Poznań, Poland. The meeting was designed to allow for an ample discussion on the themes of public participatory geographic information systems, participatory geographic information systems, volunteered geographic information, citizen science, Geoweb, geographical information and communication technology, Geo-Citizen participation, geo-questionnaire, geo-discussion, GeoParticipation, Geodesign, Big Data and urban planning. Participants in the discussion were scholars from Austria, Brazil, the Czech Republic, Finland, Ireland, Italy, the Netherlands, Poland, the United Kingdom, and the USA. A review of public participation in urban planning shows new developments in concepts and methods rooted in geography, landscape architecture, psychology, and sociology, accompanied by progress in geoinformation and communication technologies.
The discussions emphasized that it is extremely important to state the conditions of symmetric cooperation between city authorities, urban planners and public participation representatives, social organizations, as well as residents”

Jiří Pánek PARTICIPATORY MAPPING IN COMMUNITY PARTICIPATION – CASE STUDY OF JESENÍK, CZECH REPUBLIC “Community participation has entered the 21st century and the era of e-participation, e-government and e-planning. With the opportunity to use Public Participation Support Systems, Computer-Aided Web Interviews and crowdsourcing mapping platforms, citizens are equipped with the tools to have their voices heard. This paper presents a case study of the deployment of such an online mapping platform in Jeseník, Czech Republic. In total, 533 respondents took part in the online mapping survey, which included six spatial questions. Respondents marked 4,714 points and added 1,538 comments to these points. The main aim of the research was to find whether there were any significant differences in the answers from selected groups (age, gender, home location) of respondents. The results show largest differences in answers of various (below 20 and above 20 year) age groups. Nevertheless, further statistical examination would be needed to confirm the visual comparison”.

Edyta Bąkowska-Waldmann, Cezary Brudka, and Piotr Jankowski: LEGAL AND ORGANIZATIONAL FRAMEWORK FOR THE USE OF GEOWEB METHODS FOR PUBLIC PARTICIPATION IN SPATIAL PLANNING IN POLAND: EXPERIENCES, OPINIONS AND CHALLENGES “Geoweb methods offer an alternative to commonly used public participation methods in spatial planning. This paper discusses two such geoweb methods – geo-questionnaire and geo-discussion in the context of their initial applications within the spatial planning processes in Poland. The paper presents legal and organizational framework for the implementation of methods, provides their development details, and assesses insights gained from their deployment in the context of spatial planning in Poland. The analysed case studies encompass different spatial scales ranging from major cities in Poland (Poznań and Łódź) to suburban municipalities (Rokietnica and Swarzędz in Poznań Agglomeration). The studies have been substantiated by interviews with urban planners and local authorities on the use and value of Geoweb methods in public consultations.”

Michał Czepkiewicz, Piotr Jankowski, and Zbigniew Zwoliński: GEO-QUESTIONNAIRE: A SPATIALLY EXPLICIT METHOD FOR ELICITING PUBLIC PREFERENCES, BEHAVIOURAL PATTERNS, AND LOCAL KNOWLEDGE – AN OVERVIEW “Geo-questionnaires have been used in a variety of domains to collect public preferences, behavioural patterns, and spatially-explicit local knowledge, for academic research and environmental and urban planning. This paper provides an overview of the method focusing on the methodical characteristics of geo-questionnaires including software functions, types of collected data, and techniques of data analysis. The paper also discusses broader methodical
issues related to the practice of deploying geo-questionnaires such as respondent selection and recruitment, representativeness, and data quality. The discussion of methodical issues is followed by an overview of the recent examples of geo-questionnaire applications in Poland, and the discussion of socio-technical aspects of geo-questionnaire use in spatial planning”

These papers provide examples from Participatory GIS in Poland and the Czech Republic, which are worth examining, as well as our review of the major themes from the workshop. All the papers are open access.

Identifying success factors in crowdsourced geographic information use in government

GFDRRA few weeks ago, the Global Facility for Disaster Reduction and Recovery (GFDRR), published an update for the report from 2014 on the use of crowdsourced geographic information in government. The 2014 report was very successful – it has been downloaded almost 1,800 times from 41 countries around the world in about 3 years (with more than 40 academic references) which showed the interests of researchers and policymakers alike and outlined its usability. On the base of it, it was pleasing to be approached by GFDRR about a year ago, with a request to update it.

In preparation for this update, we sought comments and reviews from experts and people who used the report regarding possible improvements and amendments. This feedback helped to surface that the seven key factors highlighted by the first report as the ones that shaped the use of VGI in government (namely: incentives, aims, stakeholders, engagement, technical aspects, success factors, and problems) have developed both independently and in cross-cutting modes and today there is a new reality for the use of VGI in government.

Luckily, in the time between the first report and the beginning of the new project, I learned about Qualitative Comparative Analysis (QCA) in the Giving Time event and therefore we added Matt Ryan to our team to help us with the analysis. QCA allowed us to take 50 cases, have an intensive face to face team workshop in June last year to code all the cases and agree on the way we create the input to QCA. This helped us in creating multiple models that provide us with an analysis of the success factors that help explain the cases that we deemed successful. We have used the fuzzy logic version of QCA, which allowed a more nuanced analysis.

Finally, in order to make the report accessible, we created a short version, which provides a policy brief to the success factors, and then the full report with the description of each case study.

It was pleasure working with the excellent team of researchers that worked on this report: Vyron Antoniou, Hellenic Army Geographic Directorate, Sofia Basiouka, Hellenic Ministry of Culture and Sport, Robert Soden, World Bank, Global Facility for Disaster Reduction & Recovery (GFDRR), Vivien Deparday, World Bank, Global Facility for Disaster Reduction & Recovery (GFDRR). Matthew Ryan, University of Southampton, and Peter Mooney, National University of Ireland, Maynooth. We were especially lucky to be helped by Madeleine Hatfield of Yellowback Publishing who helped us in editing the report and making it better structured and much more readable.

The full report, which is titled “Identifying success factors in crowdsourced geographic information use in government” is available here.

And the Policy Brief is available here. 

Geothink & Learn citizen science session

The following recording is from the Geothink & Learn lunchtime webinar.

The call for the event stated:

“Should it be only people with graduate degree who make extraordinary scientific discoveries? Maybe not. Citizen scientists around the world have contributed to new discoveries in fields such as astronomy, biology, meteorology, geography, public health, and more. It can also address social and environmental inequalities, and allow individuals and communities to address issues that concern them through the application of scientific methods and tools. Efforts to harness the work of many hands or crowdsource important data collection or transcription have gained popularity because of their ability to help scientists in tasks that they wouldn’t be able to accomplish, increase public engagement with science, and potentially raise awareness and understanding of scientific issues. They also open up new lines of data in important areas of research, to the benefits of scientists and society. Citizen science requires the participation of ordinary citizens outside of scientific research in universities, governmental bodies, or other research institutions. Participation in citizen science provides individuals with new skills in technology, science, and community organization, as well as informal education on scientific issues. Crowdsourcing can take place as part of citizen science as it relates to large-scale participation that can include tens of thousands of people joining projects online.”

The webinar included me, Victoria Slonosky, principal organizer for ACRE–Canada and the Data Rescue: Archives and Weather Project (DRAW); and,  Caren Cooper, a research associate professor at North Carolina State University.

Lessons learned from Volunteers Interactions with Geographic Citizen Science – Afternoon session

The context of the workshop and the notes from the first part of the workshop is available here. The theme of the second part of the day was Interacting with geographical citizen science: lessons learned from urban environments

Volunteer interactions with flood crowdsourcing platforms – Avi Baruch talk is based on a completed PhD on the aspects of volunteers in flood monitoring and response. There are different types – incident reporting floodline, media outreach, online volunteering, and collaborative mapping. He looked at Tomnod as a system that is currently used to engage volunteers in tagging satellite images. Looked at forums and interviews with the most active participants. Most volunteers where over 50 and there is a good balance by gender. 23% stated that they had a long-term health problem – finding it addictive and spending 8-10 hours a day. Engaging volunteers is an issue: there was not enough feedback on how the information was used and how they are performing, which Tomnod team haven’t done. at least 10% of comments were concerned with the quality of their contributions. Without feedback, it is hard to judge. Tomnod allow people to explore the map and they can share location, but then people concentrate in one area. Restricting people to an area didn’t work well. Core motivations were based on altruistic reasons, and retirement, disability and health were reasons for engagement. The second part of the PhD project includes the development of a citizen science platform to report (floodcrowd.co.uk) and doing the development through an iterative process. The form allows people to report flooding incidents. All the information that is provided is location, and type of flooding, and then people can report further details. In communities, that experience flooding preferred a hard copy. All sort of information was submitted, mostly about surface mapping – many people who are potential participants didn’t want to engage with the app. Need further co-production with the people who contribute the data.

Volunteers Interaction in Technology Driven Citizen Science contexts: Lessons learned from senseBox and openSenseMap – Mario Pesch & Thomas Bartoschek SenseBox have been developed over the past 4 years. It came out from teaching computer science in school – focus on environmental sensing which the students wanted to see on the web. Sensing temp, humidity, pressure, light, UV-light. People wanted to participate in the project from outside school. in 2014, they had 50 sesneBoxes – most connected only for few weeks (8m records). After a while, people find it complicated and they wanted to do something on their own. They created a DIY sensing box for home and for school. The component allows people to create things without soldering. They set out reference stations next to official monitoring station – people asked about it. You always need to consider the limitation of the system. SensorBox home 2.0 was looking more at air quality and more options to send the data – measuring in places without WiFi so they added GSM and now they have 1500 sensing stations and people also want to work with the data and you can do basic interpolation. The platform is device independent and people use it for other systems. Also supporting mobile stations, They keep the project open – it can be adjusted to people own needs.

Lessons learned from volunteers’ use and feedback of the Cyclist GEO-C App – Diego Pajarito, Suzanne Maas, Maria Attard and Michael Gould the experience of the cycling app is part of the PhD network GEO-C – open city toolkit. A lot of application target sports or data collected but not linked to the experience on the road. The location Cyclist GEO-C app is for Android and can be competition or cooperation based, and collect GPS tracks and up to 3 tags. Tried in Castello, Munster and Valletta and Malta. There are different levels of cycling used. 20 participants – that commute regularly and using an Android phone. Different participation methods – as a group to get common views. They captured 793 trips, the response was generally positive. People seeing a potential for personal use but also to lobby and promote cycling. Can be a motivational tool for beginners. They also identify the issue of remembering to use the app when the need to use it, improve control over recording and improving the tags. Ideas about mapping interface and using wearable devices, social interaction and gamification were suggested.

Invisible Citizen Science: the case of Járókelő in Hungary – Bálint Balázs & Le Marietta thinking of the citizen science in Eastern Europe, which thinking about modes of public participation in scientific discourse and policy-making, there are multiple silences: there are many projects that offer it, and in the level of initiative – the term haven’t exist and used. The interview from an NGO suggested lack of familiarity. In eastern countries in Europe, citizen science is only recently emerging, not many initiatives, and little-published articles and only a few members of ECSA, and how it is connected. Methods are limited. Need to reconceptualise. There is invisible citizen science – the specific knowledge that is produced in the projects that they are looking at it are uncommon to scientists. An example for this is jarokelo – for addressing local issues – looking at the example for “fix my street” (or “letter to the mayor” in the Czech Republic). Civic technology to report street fixing and there are 20 volunteers who can transfer it to the authority – there are 50-100 reports per day and the reporting back from the authority can take 30 days. Most authorities report back, they also received reports on homeless people and had to agree on what to do with this types of report. The issue of participants is about trust in the state and also think of cooperative research ideas – analysing users’ statistics, thinking of involvement pathways and better communication.

Citizens as Shoppers: Lessons learned from the EnvBodySens application – Eiman Kanjo  looking into mobile sensing – the challenge for retail in the centre of cities and there is also all sort of noise and air pollution that people are concerned about. Done work around a popular shopping area in Nottingham city centre – what kind of sensors – environment, physiology, motion, timestamps, location, continuous self-reporting and the zoning (understanding which shops they are in, or the area that they are visiting). Issues of collecting data involve selecting types of sensors (e.g. the characteristics of the sensors). There was issue of demography, shopping behaviour (men/women), challenges with how many volunteers you get and how to prepare volunteers – but for shopping, we need them to be relaxed and enjoy the shopping and how you start the experiment. There is also the aspects of the journey (real-life shopping experience and temporal aspect of it) which also raise ethical concerns. They needed to consider if the phone is on all the time or should it use voice and audio information. Self-reporting and self-assessment is something that needs consideration. They ended with 50 participants, wristband devices and mobile phone and a 45 shopping journey – they looked at the impact of noise and they also consider how they can visualise all this information.

Lessons learned from the recent landlside mitigation efforts: citizen science as a new approach – Sultan Kocaman & Candan Gokceoglu volunteer contribution can provide important information – increase world population and climate change (extreme weather) is a major natural hazard. Wanted to explore how citizen science is relevant to address uncertainties because there is a lack of reliable temporal data. Risk assessment s base on knowledge of past events – then assessing susceptibility, hazard assessment and then you can understand the risk assessment and manage it. Landslide susceptibility requires a lot of information and data. The risk assessment needs all this information as otherwise there will be too much uncertainty. The majority of landslides are in mountainous areas and we can’t have sensors, but information is coming from observers evidence, and volunteers can provide the time and location in a better way. Shallow landslides disappear after a short period. Need volunteers at the right time and the right place – distributed participation. The scale of movement can also be measured with volunteers. Currently working on the project and consider what can be done – what the frequency and quality of spatial and temporal data and in any case rely heavily on local knowledge but need to be improved.

Citizens as volunteer cartoghraphers: A pedestrian map case study – Manousos Kamilakis exploring the field of cartography for pedestrian – based on ideas from VGI so people can share information. Most of the online maps are focusing on motorised transport, and less about the aesthetic pleasantness of the journey, the condition of the pavement etc. The two journeys are suggested as equivalent and only one of them is offering a better journey. Created an app for pedestrian reporting and recording the journey, then evaluate and review the journey and also editing a path. They carried out an experiment with people who never edited a map and had various motivations – the leaderboard wasn’t of interest, although half were motivated by gamification and were willing to cheat to score points. Creating motivation is difficult – need to design gamification carefully and external incentives encourage unacceptable data uploading – consider peer review. People do not volunteer to all tasks in an equal way.

Interacting with Community Maps – Mapping for Change Louise Francis and Rosa Arias cover the development of international odour observatory.  Building on Principle 10 of Rio and the right of access environmental information – different authorities produced maps, such a noise map.When talking with communities, people are pointing that they have a different experience and reflect their own understanding of their local conditions using citizen science. Citizen collect information and Mapping for Change visualise it on behalf of the community. Community evolved over the years. it is a flexible system that allows people to decide on the grouping of information – the themes are being groups in different ways. There is also a need to make conversation – interact with contributions that other people added. The data is to drive change – for example leading to a change in buses through campaign and publicity to change things around them. Lessons learned: communities, where adding data – demonstrating that community members wanted to share a lot of data and they wanted information on their balcony and putting a point on top of a point, wasn’t possible in the past and require changed. The map is allowing clustering that shows 115 points in a small area. Some communities wanted to have their own classification – so they took the data and created their own visualisation. We learned that and want to be part of the D-Noses: odour pollution. The top-down approaches to address issues of odour and there is fairly little addressing of issues. OdourCollect focuses on bottom-up approach – using the nose to notice odour problems. The OdoucrCollect allow data capture.

A Case Study on the Impact of Design Choices on Data Quality in Geographic Citizen Science – Jeffrey Parsons, NL Nature design choices – ecologist and looking at data management and data quality. Looking at a specific design choice. Looking at two archetypes of systems – on one end well defined and stable use of data (close) precise focus on data collection and data collection standards – citizen scientists with requisite domain knowledge and motivated to do the work well. The other end ill-defined, open use, which provides opportunities for data collection in an opportunistic way, ambiguous data collection standard and unclear domain knowledge. eBird is an example of a project that is towards the closed version. The research setting in traditional science lead to design principles for closed citizen science and these don’t work in open and that can lead to a problem in the application. Information quality is a major challenge in User Generated Content (UGC) – there is all sort of comments about it. Fitness for use is a major one – in close: training, data collection protocol, clean data – but this is a problem in an open environment and it can inhibit contributors from communicating unique knowledge. They suggest crowd IQ – from the contributors’ perspective (Lukyanenjo et al 2014). The question is how do we design in such a way that matches the contributors’ mental models of the information and align with contributors’ capabilities. Design principles focus on conceptual modelling – describing in a way that you use a class-based approach of setting the categories and the model drive the design. Design choice of conceptual model of the producer and not necessarily of the contributors. The alternative is to do instance-based modelling which is based on an ontological view of a world made of things and cognitive approach. The information quality impacts – if you think about data completeness as a way to describe the engagement of volunteers to add information. They checked a website that was focused on species only and another one that focuses on the attributes. The hypotheses are that they’ll get more observation and novel species. NLNature.com is about observations of wildlife. They allow people to type species name or the Latin name, the other option is typing whatever you want. They collected data over 6 months, they have 4 times more observations in the instance based condition, and also observe that class-based condition frustrated the contributors and left compared to the class-based case. They got many more species in the instance based when it is open to people to define insects, fish. They even discover a new type of wasp. The bottom line, modelling choices affect dataset completeness – class based lead to fewer observations and especially of species that are not in the schema.

 

From paper prototyping to citizen participation: Co-designing geolocated cultural heritage applications that trigger personal reflection – Kate Jones – looking at cultural heritage. The aim is to create a serendipitous outdoor exhibition to reflect on historical topics and encourage thoughtful play on historical issues. The topic that they focused on was that of migration – 45% of the population is made of migrants in Luxembourg and that influence way to thinking of a location for historical and contemporary memories and experiences. Two places – Luxembourg city and Valletta and they are both touched by migration and are UNESCO sites. They have Mobile app, moderator app, and point of interest management system and they check the information and want to use CrowdFlower to moderate. The application is to allow people to tag history places and be able to record journeys and stories about spaces and memory. Complexity is being hidden behind the levels. The app informs the user that they are being tracked. It was designed in an iterative process – user scenario, requirements, wood game to try how people use the application action – then develop and evaluate. A board game prototyping allowed the development of scenarios. Postcards symbolic of the user interface. The content needs to be valid, and interesting – want to reflect when people are out and about it the city. They included game designer and the developer and they can see the perspective of the player. People used stickers on the board card to indicate what they liked and disliked – people wanted a stronger connection between migration and experience. They used a digital humanities methods and figured out that it can be too complex so the levels can help in unlocking it. Questions had to be changed to address the emotional response of participants, and the multi-city connection was complex and need to develop carefully. A board game for the design was fun and collaborative but also helped in the development of the game. Going t the field, the launched the application in September 2017. out of 500 students, 40 app download, and only two trajectories. They created a new iteration. People don’t like reading the lengthy text – so they put it text to voice and that brought different issues with the interface. They see different types of people in the user population. Exploration have led to a change in perspective in the final application and grounded in participant experience. How do we give people the motivation to give it a go?

Geographical expertise and citizen science: planning and -design implications – Colin Robertson & Robert Feick considering different levels of geographical expertise – what does it mean to be a geographical expert – what are the expert/non-expert into a spectrum. We can look at some ideas of expertise: Collins 2013 pointed to the 3 dimensions of expertise – contributory, interactional and esotericity – exposure to tacit knowledge in a domain, recognised accomplishments or is it expertise that is common or uncommon we can look at it in a continuum – locale familiarity: place-based expertise related – might be fuzzy. Other geographical knowledge is about place-types – say urban environments or glacial environment. We can think about expertise in the cube – for a soil scientist it is in position A, long-term residents of the area might be a huge locale expertise B and so on. We can think of different projects – from Stresscapes – tweets as a place-based emotional expression but realise that this need validation with participants to check if the tweet related to the surroundings. The engagement was trying to be generic and ignored place and context. Everything was done through surveys on Twitter. RinkWatch looked at outdoor rink skateability – over 2000 rink people are passionate about it. The – a level of skateability level. the level of expertise is high in local knowledge and in thematic specificity. The Wildlife Health Tracker – where dead animals are – knowledge from hunters to capture information about what they have seen. Information that was reported is the type of animal – moderate thematic and local knowledge and low domain knowledge. The participants weren’t involved and much interested. The GrassLander is looking at private land – birds and habitats. Looking at farming community reporting. The cases here are where they’ve seen two types of birds (bobolink or eastern meadowlark) and – high thematic specificity, and moderate to high local knowledge and moderate domain knowledge (two species identification). Farmers were involved and there was a need to restrict access between participants. No project required high domain knowledge, the successful cases include place type or locale familiarity knowledge – though it’s a small sample. Many questions: metrics, credibility and trust models are all interesting.gfg

Following the day, group discussions explored the issues with people, technology, and future directions. Here are the future directions that were supposed in the group that I chaired with the help of Dan Artus (a future report from the workshop will be available)