Into the night – training day on citizen science

dscn1936Last December, the Natural Environment Research Council (NERC) awarded funding to UCL Extreme Citizen Science group and Earthwatch as part of their investment in public engagement. The projects are all short – they start from January to March and included public engagement and training to early career researchers.

“Into the Night” highlights the importance of light pollution, a growing environmental stressor to both wildlife and humans, through collaborative and co-designed citizen science research. The project aims to increase awareness of this issue through two public workshops exploring the potential of two citizen science focal points – glow-worms and human wellbeing – explicitly linking ecological and human impacts. The project will culminate with a set of public activities (pilot data collection and educational) to coincide with Earth Hour (25.03.2017).

The project aims to build public engagement capacity through PhD internships with Earthwatch (Europe), CEH, Natural England and UCL, and forms a dedicated training day on the design and implementation of citizen science for 50 early-career researchers and PhD students.

The project is led by UCL (in collaboration with North Carolina State University – NCSU) and Earthwatch, bringing together leading research and practice in citizen science. It is the result of two co-design workshops, with over 30 participants from environmental science, social science, public health, National Parks, and NGOs. Based on this preparatory work, and with active training of early career researchers, we will run two focused workshops which will take place in dark sky reserves. These workshops will focus on two preliminary ideas for citizen science projects: a countrywide survey of glow-worms and the impact of artificial light on their activities, and the influence of lightscapes and dark green spaces on human wellbeing while balancing safety and concerns.

The two projects will generate public awareness and provide the public with opportunities to have debate and dialogue on the subject, as well as involvement in data collection and analysis. Results will be shared through social and traditional media. The outcome will advance ideas for a national citizen science project, which UCL and Earthwatch will take forward.

The training day run in Oxford on the 2nd February and during the day I gave two 45 minutes sessions. First, I provided an introduction to the field of citizen science, how to design a project, and how to evaluate such a project.

The session provided a brief overview of the types of citizen science that are relevant in addressing environmental challenges. We looked at classifications of citizen science projects, explore their potential goals, the process of recruitment and retention as well as the need to start project evaluation from an early stage. At the end the participants engage in a short exercise to consider how these elements can be used in the design of a citizen science project.

The second talk focused on technology.

The talk aim was described as follows: Current citizen science seems effortless…just download an app and start using it. However, there are many technical aspects that are necessary to make a citizen science project work. This session provided an overview of all the technical elements that are required – from the process of designing an app, to designing and managing a back-end system, to testing the system end to end before deployment. Again, at the end of the session, a short exercise considered the design of an app for a citizen science project that addresses light pollution.


Public Participation GIS and Participatory GIS in the Era of GeoWeb – editorial for a special issue

As part of the AAG 2015 conference, Bandana Kar, Rina Ghose, Renee Sieber and I organised a set of sessions on Public Participation GIS – you can read the summary here. After the conference, we’ve organised a special issue of the Cartographic Journal (thanks to Alex Kent, the journal editor) dedicated to current perspectives of public participation GIS (PPGIS) and participatory GIS (PGIS).

The process of organising a special issue is quite involved – not all the papers that start the journey managed to finish, and even at the last point, 2 papers that are part of the special issue will appear in the next issue of the journal due to physical limitations and the number of pages that appear in each issue!

Working with an editorial group across the US, Canada, and the UK was also a challenge, especially as we were all busy, as usual. Bandana Kar kept us going and because of her continued efforts and encouragement, the special issue was evolving. So it’s only right that she is the lead author of the editorial piece. Our editorial points to the evolution of PPGIS and the need to understand how it is shaped up in the era of web-based mapping and rapid increase in the use of mobile technologies. The papers in the special issue (you can find them here) are addressing this evolving landscape and are all worth reading. We finish our editorial with the following statement:

‘In this sea of changing tools and technologies it appears that P/PGIS may be competing with other approaches and terminologies. At its core many of the new projects remain mission-driven, are led by local residents, and requires generation of data and knowledge to resolve a specific problem. The data generated through platforms old and new still suffer from lack of interoperability and data quality issues. Analytics may have been improved since the days of the command-line but still require considerable expertise; moreover, evidence-based policy, especially from the non-credentialled, must have entree into politics. Moving forward, researchers and practitioners should focus on not answering the place of P/PGIS amid new technologies and approaches but instead examine the extent to which new participatory technologies are effective in integrating local, scientific and personal knowledge in resolving political decisions and societal issues of interest to local communities.’

The paper is available here and if you don’t have access to the journal, email me and I’ll send you a copy.


New paper: Usability and interaction dimensions of participatory noise and ecological monitoring

The EveryAware book provided an opportunity to communicate the results of a research that Dr Charlene Jennett led, together with two Masters students: Joanne (Jo) Summerfield and Eleonora (Nora) Cognetti, with me as an additional advisor. The research was linked to the EveryAware, since Nora explored the user experience of WideNoise, the citizen science noise monitoring app that was used in the project. There is also a link to the Citizen Cyberlab project, since Jo was looking at the field experience in ecological observation, and in particular during a BioBlitz. The chapter provides a Human-Computer Interaction (HCI) perspective to the way technology is used in citizen science projects. You can download the paper here and the proper citation for the chapter is:

Jennett, C., Cognetti, E., Summerfield, J. and Haklay, M. 2017. Usability and interaction dimensions of participatory noise and ecological monitoring. In Loreto, V., Haklay, M., Hotho, A., Servedio, V.C.P, Stumme, G., Theunis, J., Tria, F. (eds.) Participatory Sensing, Opinions and Collective Awareness. Springer. pp.201-212.

The official version of the paper is on Springer site here.

Esri User Conference 2016 – plenary day

The main Esri User conference starts with a plenary day, where all the participants (16,000 of them) join together for a set of presentation from 8:30 to 3:30 (with some breaks, of course). Below you’ll find some notes that I took during the day:

wp-1467087487123.jpgThe theme of the keynote was GIS – Enabling a Smarter World. After an inspirational video (emphasising environmental applications of GIS, including dealing with sustainability and biodiversity), Jack Dangermond, opened the conference by covering a range of applications that fall under smart GIS. Examples include environmental monitoring, energy management for renewable energy and grids. Using the management of land information and urban design (green infrastructure plans, corridors for wildlife etc.), transport –  smart routing reduce environmental impacts, and increase efficiency. Engineering and public work, utilities and telecommunication, business analytics (an area that finally is taking off), public safety and also humanitarian support. We have an increasing understanding of citizen engagement through open data, and the UN is using GIS to share open data in data management for the Sustainable Development Goals. Story telling, and story maps are becoming central to the way information is shared.
We’re living in a world that is undergoing a massive digital transformation – how do we go forward in this wired planet? GIS is a language for understanding the world. We need to address the crisis of sustainability – we need to address the problems together. GIS allow integration, visualisation – a framework to design for the future through geodesign. Turn information to action – from measuring to affecting the world. GIS itself is getting smarter – through technologies and tools, sensors, types of data. Smart GIS is a variety of things: ability to connect to real time information – IoT, remote sensing, connecting everyone – assisting communities to understand what they are doing and acting. It mean integrating spatial data and records with system of engagement. This is possible through Web GIS pattern. Earthquake alerting from USGS tell people to get ready, and also flood analytics. There is an emerging ‘Community GIS’

A leading example of this change is the City of Los Angeles GeoHub– Lilian Coral – chief data officer described how she try to ensure that the city is using data for helping the management of the city. To assist with that, they have developed to enable community organisations to do things with city data. It is using open data and open applications to allow new applications to solve problems. From running a clean Street Index to compare the information between different areas. GeoHub helps to unlock data in the city and can provide  support a range of application. People are used for community data collection on Exide Battery Contamination that happened in LA. LA is aiming to reduce death from accidents on the road, and trying to improve performance over time. They even try to explore walking in LA and reduce car dependency. They learn that the GeoHub is foundation for smart cities and develop a range of hubs for generating and using geographic information for residents.

Awp-1467087506737.jpgfter the GeoHub presentation, Jack Dangermond noted that we have an ability to share geographical knowledge like never before.  The concept of ArcGIS evolved to see it as a hub between a system of records, system or analysis, and system of engagement. Growing important of web services and apps. ArcGIS tools are evolving – collector and Survey123 apps are linking to field workers and data collection. In terms of GIS technology, there is more effort on exploratory spatial data analysis tools (Insights for ArcGIS) and making it possible to analyse Big Data – for example billion transactions – using distributed computations using computer clusters. Application such as Drone2Map can speed up the process of turning drone imagery. There are more development tools for apps, with over 500,000 appearing. The open source apps allow people to developing further. Esri has run 4 MOOCs and may learning resources that are free for use by users of Esri. Esri support 11,000 university and higher education institutions around the world.  The people who are working in GIS, engaged and committed, are the people who are creating a smarter and more sustainable world.

wp-1467087511310.jpgLater in the day, some of the technologies that were discussed include the living atlas which is a whole catalogue of updated base maps, and the use of vector data allow restyling of information in many ways. A growing range of apps for the field, office and for the community support a range of activities. Information for communities include story maps, open data, photo survey, crowdsourced reporter, manager, and polling.

An example for the utilisation of the apps was provided by the talk “Civic Responsibility – Changing Our Approach” from the City of New Orleans (Lamar Gardere, Greg Hymel & James Raasch). In New Orleans they used collector to work with volunteers to coordinate and record a progression of a campaign to raise awareness to mosquito that can be vectors of disease. They also created a very fast survey methods based on images of building, using a crowdsourced image analysis that includes 6 attributes. The photos where collected throughout the city using geolocated wide angle camera. They then prepare the images and created a way of capturing information. They ask people to help in crowdsourcing. An example for geographical crowdsourcing in government, with micro tasks: . They have also created an application to link people relating to basins and reports from 311 calls. When someone agreed to adopt a ‘catch basin’ (a drain in the street) then they are sharing responsibility to check that it is not blocked before storms arrive and volunteer to clean the drain. They also have a story map, to let people share their pictures and images that are integrated into a story map.

wp-1467087515436.jpgAfternoon session opened with the main keynote “The Invention of Nature: Alexander von Humboldt’s New World” by Andrea Wulf. She told the story of Alexander von Humbolt, who spend his fortune on a journey of 5 years in south America, the most famous person in his time after Napoleon. He inspired Darwin to go on the Beagle journey. Many people relate to him and his insights. Died in 1859, and after his death people celebrated him – but he is almost forgotten today. Humboldt invented the concept of Nature, noticing the connection between different aspects of the living world, and geography. He also defined global climate and vegetation zones. Pioneering mapping and visualisation – using scientific data as a basis for fantastic maps. He can also be associated with concepts of environmentalism. Her book explores him and his insights. The journey from Quito to Chimborazo was similar to a journey from the tropic to the arctic, and realised that it’s like movement between different regions of the world. He was capable of linking many things together. Humboldt also created new forms of cartography, and have an appreciation to indigenous knowledge. Humboldt ‘Cosmos’ made a physical description of the universe, linking many aspects of nature together and this was his most popular contribution. The network of GIS and the creation of a living atlases in GIS is knowledge that bring power to people and communities – we can see a link to practices in GIS to von Humboldt.

Another major announcement was the effort of “Designing and Creating a Green Infrastructure” with Arancha Muñoz Criado (City and Strategic Planner) and
Kaitlin Yarnall (National Geographic Society). A common initiative of conservation organisations to create a common set of information about green spaces and wild spaces. Esri and National Geographic are joining forces to create information system for this. The notion is to protect green infrastructure across America – a GIS for the whole country, to define the area that need protection. They will provide extensive information and will provide geodesign tools to allow many people to use the information.

wp-1467087519514.jpgAnother important presentation was about “The AmzonGISnet” with Richard Resl and Domingo Ankuash in Ecuador, who use GIS in new ways. 20 years ago, Domingo started to use GIS to help the indigenous tribes that he leads to protect their lands. Many local indigenous members of the community who have GIS skills and who create a self made life plan – their own atlas representing their land and views. He noted that his community “We do not live in the forest, we are part of it”. The are not thinking themselves are poor, but need the support of other people to protect their land – having maps that are strategic and mindful. Using GIS not to navigate the forest but to protect it.

The final talk in the event was about Connecting GIS with Education, noting that  there is more work on GIS in schools across the US and the world. San Andreas High School started only 18 months ago with GIS, with only one teacher getting into GIS, but alrady achieving results through collaboration with GIS Mentors. An area with 98% students who receive free lunches. The GIS is a force for good. They created a story map about teens and drinking & Alcohol abuse, showing analysis and considerations within the process. Students also created data collection for surveying the state of sidewalks using Survey123.

Esri Education Conference 2016 – day 1

I’ve been working with Geographic Information Systems (GIS) since 1988. During the first 2 years, I wasn’t even aware that what we were doing was GIS – it was a mapping/inventory system that run on second generation PC (80286 processors) and was used to map facilities. Once I’ve discovered that this was a GIS, the next thing was ‘and ESRI Arc/Info is the software that you should check’. I’ve heard a lot over the years about the Esri User Conference, but haven’t had the chance to attend it, so this year I’m filling in the gap in my experience of the world of GIS. I’m giving a keynote at the Esri Education User Conference (EdUC), and I’ll attend some other parts of the general User Conference, and report on the experience.

The Education UC opened up with interest in creativity. Angie Lee, who opened the conference, noted her inspiration to the theme from learning about the makers movement and the growing interest in teaching students to code. She noted that many aspects of GIS encourage creativity: developing a story map or building an app. The opportunity that are emerging with new technologies  This is also true in science for the development of hypotheses and methodologies.

The two keynotes on the first day are by Dave Zaboskiwp-1466874989913.jpg
(Professional Artist / Creative Consultant) a former Senior Animator with Disney. Dave suggest that people have an innate ability of creativity. Creativity that is common at a young age but disappear later. Creativity is the willingness to do try things, it’s the courage to take risks. It’s the act of turning a thought into a thing, but we tend to get lost in the process. Resolute imagination is leading to magical results. The approach that he suggests is highlighting a spiral iteration instead of trying to move directly at a goal. There are five key attributes: first – believe in what they are doing. Have a clear narrative, and trying to reduce noise to increase the signal. You can think of things you have no control about them (A list),  issues that you can influence (B list), and a D+ list of things that make you lighter & happy, that make the ‘signal’ in life. The A list should not considered – someone else is going to take care of that and it will be their D+ list. The B list, can be solved at one thing a day, and then focus on the main issues. Then you can focus on the D+ list. Need to collaborate, and risk in a powerful way – when iterating you need to be confident that you can try again. Need to know that it might require throwing work that you have already done. Need to learn to trust you own abilities. Need to be able to allow instead of cognitive dissonant to have allow for information to have creative confusion until the information organise itself in a way that make sense. Completion is also important: acknowledge that people that were involved, analyse and celebrate. When you can declare that you have completed, you can move to the next challenge. Creators believe, iterate , collaborate, risk, and complete.
wp-1466981055360.jpgThe second keynote was by Dominique Evans-Bye, Science Teacher, Clark Magnet High School. She gave a detailed presentation on teaching GIS in high school through project based learning – including diving and operating ROVs. She’s working with low income students, many are from immigrants families. The first project in 2006 that the students done was to analyse sediments and heavy metals in the Los Angeles Harbour. The students collected samples and then analysed the level of contamination in them, and visualising the information on a GIS. In the next stage, they examined contamination in lobsters and they analysed the tissues, with mass spectrometers. They found high arsenic levels. The students gain confidence, and learn through iteration and use the online tutorials of ArcGIS Online and offline to develop skills and use them to analyse their information. The exploration of the problem lead to new questions and ways to represent the information. The students are doing also applications with the Esri collector app, to understand how the litter can end up in the ocean. Another project involved them analysing albatross  migration. Through classes on environmental GIS which was problem oriented and based on all the skills that they’ve gain in operating the research process itself. The students are collaborating, and see the process from projects where they’ve been involved in data collection to analysis. Students experience collaboration with scuba divers from NOAA and other bodies. The students won awards and scholarships as a result of their effort. There are major benefits for creating a creative learning environment with high school students and allowing them to develop their learning through problem solving.

In an afternoon session, I presented a talk that Patrick Rickles prepared, titled GIS and Citizen Science: Combining Open Source and Esri Technologies. The presentation focused on the way that some of the technologies that are developed in the ExCiteS group, such as GeoKey and Community Maps, can work with Esri technologies. The presentation open by explaining the needs and requirements – the interdisciplinarity of the group, and the type of areas that we work with. He then demonstrate, using the work of Challenging Risk project in Seattle, which looks at participatory methods for community preparedness to earthquake and fire. The context of the project mean that there can be 2 way data sharing – from the community to local government so they can see the information in ArcGIS Online, and information from the open data store can be shared on Community Maps. Several other examples for Esri technologies that are in use are shown.


Esri Education User Conference talk: Citizen Science & Geographical Technologies: creativity, learning, and engagement

The slides below are from my keynote talk at the Esri Education User Conference 2016. The conference focused on creativity and its relevant to education and the utilisation of GIS (especially Esri software) at different levels of education.

My talk explored the area of citizen science and extreme citizen science and the way geographical technologies contribute to creativity and learning. As I continue to assume that many of the audience don’t know about citizen science, I start with a review of the field as a way to contextualise what we, as a group, try to do.

[The talk is similar, in parts, to other talks that are captured here on my blog (workshop on theory, practice and policy, standards and recommendation for citizen science, or the current developments in ExCiteS). I’m updating the slides with lessons on what seem to work or not in previous talks. Social media is helpful for that – I can see which points people found most useful/meaningful!]

The talk starts with an historical perspective of citizen science, continue with the societal and technical trends that are at the basis of the current growth in citizen science. Having done that, I’m using a typology that looks at domain (academic discipline), technology, and engagement as a way to introduce examples of citizen science activities. I’m using the trailer for the TV series ‘the Crowd & the Cloud’ to recap the discussions on citizen science activities. I also mention the growth of practitioners community through the Citizen Science Associations.

Next, on this basis, I’m covering the concepts and practices of Extreme Citizen Science – what we do and how. I’m using examples from the work on noise, community resource management and earthquake and fire preparedness to demonstrate the concept.

The last part of the talk focuses specifically on creativity and learning from the Citizen Cyberlab project, and I explain the next steps that we will carry out in the Doing It Together Science project. I complete the talk by giving examples for activities that the audience can do by themselves.

Throughout the talk, I’m showing how Esri technologies are being used in citizen science. It wasn’t difficult to find examples – Esri’s GIS is used in BioBlitzes, Globe at Night, links to OpenStreetMap, and support the work that the ExCiteS group is doing. Survey123 and similar tools can be used to create novel projects and experiment with them. ArcGIS Online will be linked to GeoKey, to allow analysis of community mapping efforts. In short, there is plenty of scope for GIS as an integral part of citizen science projects.

Algorithmic governance in environmental information (or how technophilia shape environmental democracy)

These are the slides from my talk at the Algorithmic Governance workshop (for which there are lengthy notes in the previous post). The workshop explored the many ethical, legal and conceptual issues with the transition to Big Data and algorithm based decision-making.

My contribution to the discussion is based on previous thoughts on environmental information and public use of it. Inherently, I see the relationships between environmental decision-making, information, and information systems as something that need to be examined through the prism of the long history that linked them. This way we can make sense of the current trends. This three area are deeply linked throughout the history of the modern environmental movement since the 1960s (hence the Apollo 8 earth image at the beginning),  and the Christmas message from the team with the reference to Genesis (see below) helped in making the message stronger .

To demonstrate the way this triplet evolved, I’m using texts from official documents – Stockholm 1972 declaration, Rio 1992 Agenda 21, etc. They are fairly consistent in their belief in the power of information systems in solving environmental challenges. The core aspects of environmental technophilia are summarised in slide 10.

This leads to environmental democracy principles (slide 11) and the assumptions behind them (slide 12). While information is open, it doesn’t mean that it’s useful or accessible to members of the public. This was true when raw air monitoring observations were released as open data in 1997 (before anyone knew the term), and although we have better tools (e.g. Google Earth) there are consistent challenges in making information meaningful – what do you do with Environment Agency DSM if you don’t know what it is or how to use a GIS? How do you interpret Global Forest Watch analysis about change in tree cover in your area if you are not used to interpreting remote sensing data (a big data analysis and algorithmic governance example)? I therefore return to the hierarchy of technical knowledge and ability to use information (in slide 20) that I covered in the ‘Neogeography and the delusion of democratisation‘ and look at how the opportunities and barriers changed over the years in slide 21.

The last slides show that despite of all the technical advancement, we can have situations such as the water contamination in Flint, Michigan which demonstrate that some of the problems from the 1960s that were supposed to be solved, well monitored, with clear regulations and processes came back because of negligence and lack of appropriate governance. This is not going to be solved with information systems, although citizen science have a role to play to deal with the governmental failure. This whole sorry mess and the re-emergence of air quality as a Western world environmental problem is a topic for another discussion…