Developing mobile applications for environmental and biodiversity citizen science: considerations and recommendations

The first outcome of the December 2016 workshop on apps, platforms, and portals for citizen science projects was the open access paper “Defining principles for mobile apps and platforms development in citizen science“, which came out in October 2017.

Lunaetal2018Fig3.pngThe workshop, which was organised by Soledad Luna and Ulrike Sturm from the Berlin Museum for Natural History, has led to a second output – a chapter in the book Multimedia Tools and Applications for Environmental & Biodiversity InformaticsThe invitation for contributions came at the right time with the first workshop in December 2016. The Chapter was completed in August 2017 and finally came out at the beginning of the month. A year from submission to getting it in press, which is fairly common in academic publications.

The chapter is different from the journal article, in providing more detailed examples of applications, and summarising aspects of systems in use and data standards that can be applied.

The abstract of the paper is:

The functionality available on modern ‘smartphone’ mobile devices, along with mobile application software and access to the mobile web, have opened up a wide range of ways for volunteers to participate in environmental and biodiversity research by contributing wildlife and environmental observations, geospatial information, and other context-specific and time-bound data. This has brought about an increasing number of mobile phone based citizen science projects that are designed to access these device features (such as the camera, the microphone, and GPS location data), as well as to reach different user groups, over different project durations, and with different aims and goals. In this chapter we outline a number of key considerations when designing and developing mobile applications for citizen science, with regard to (1) interoperability and data standards, (2) participant centred design and agile development, (3) user interface & user experience design, and (4) motivational factors for participation.

The chapter can be accessed using the following link Luna et al 2018 Developing mobile applications for citizen science – enjoy reading!

 

Advertisements

Lessons learned from Volunteers Interactions with Geographic Citizen Science – Morning session

On the 27th April, UCL hosted a workshop on the “Lessons learned from Volunteers Interactions with Geographic Citizen Science“. The workshop description was as follows:

“A decade ago, in 2007, Michael Goodchild defined volunteered geographic information (VGI) as ‘the widespread engagement of large numbers of private citizens, often with little in the way of formal qualifications, in the creation of geo­graphic information, a function that for centuries has been reserved to official agencies.’ (p.2). The collection and use of this type of crowdsourced geographic data have grown rapidly with amateurs mapping the earth’s surface for all kind of purposes (e.g. collecting and disseminating information about accessibility in urban centres, for crisis and emergency response purposes, mapping illegal logging in remote areas and so on). A subset of these activities has been described as ‘geographic citizen science’ and includes scientific activities in which amateur scientists (volunteers) participate in geographic data collection, analysis and dissemination within the context of a scientific project (Haklay, 2013) or simply by using scientific methods and equipment. Although, there is an extensive discussion in the VGI and geographic citizen science literature about opportunities as well as implications (e.g. data coverage, data quality and trust issues, motivation and retainment of volunteers and so on), examples from the actual interaction are not so widely discussed, neither has evidence been collected from a broad spectrum of case studies to demonstrate how volunteers interact with those technologies and applications, what they are looking for and what it is that they need/try to accomplish (at a scientific, project and personal level) and what are the common design mistakes that influence interaction.” The following is a summary of the talk and presentations:

Welcome & Instructions – Artemis Skarlatidou the workshop is linked to our ERC funded project Intelligent Maps (ECSAnVis) and  EU funded Doing It Together science (DITOs) and the COST action – our work deal with geographical applications of citizen science and data collection. There is the COST Action CA15212 which got 243 members in 39 countries – all exploring aspects of citizen science – Work Group 1 (WG1) for scientific quality, WG2 education, WG3 society-science policy, WG4 the role of volunteers in citizen science, WG5 data and interoperability, and the synergies in WG6. In WG4, which Artemis lead. we’re looking at stakeholder mapping, motivation, needs and interaction issues, and mapping citizen science across Europe. Another relevant group is the ICA Commission on use user and usability issues, the International Society for Photogrammetry & remote sensing that have a WG V/3 that look at citizen science and crowdsourced information. Sultan Kocaman explained the ISPRS link – WG V/3 focus on the promotion of regional collaboration in citizen science and geospatial technologies within the focus of ISPRS area of education and outreach.

Louis Liebenberg presents Smartphone Icon User Interface design for Oralate Trackers – Louis Liebenberg who for 3 decades have been developing software to allow hunter gatherer to protect their knowledge of tracking. One of the challenges that Louis address is the understanding how our scientific thinking evolved. Louis suggests that tracking is an example for hypothesis testing and rational thinking that evolved in in tracking by hunter gatherers. He worked with !Nate from the San people since 1985 – the context of technology use by San for a long time. Already 100 years ago, hunters discovered that arrow points can be made from fence wire and started using them. This is an example of how hunter-gatherers adopt to technologies around them. Hunter-gatherers are not isolated: they always interacted and traded. Developing a software for a smartphone (you can get an Android phone for $10 in South Africa today), is similar to adopting the fence wire for the arrows 100 years ago. He learned from master trackers – the level of sophistication of trackers is astonished him since the mid 1980s. In the Kalahari, dogs were introduced in the 60s, and therefore the knowledge of tracking and the practices of hunting change. He used tracking and certification in it in order to secure employment. Master trackers are expected in an egalitarian society to show humility, so it is possible to miss them if you go and ask “who’s the best tracker here?” – the certification is a way to provide recognition and work. The tracking provided employment in the 1990s in surveying the movement of animals in the Kalahari. The persistent hunt – when you do it without any equipment, running animals down until they die from exhaustion which is an adaptation that humans have to be able to do that. Karoha was one of the persistence hunters but also able to use CyberTracker and use the system. Parallel to the software, Louis develop the tracker certification, to know if the data is reliable. As Master Trackers die, the knowledge is lost, so the certification provides an opportunity to encourage the younger generation to develop the knowledge and benefit from it. The level of details in animal tracks is very high. There is a high level of ambiguity in tracking and requirement to learn about claw marks and knowing what are the possibilities then it is possible with high certainty to understand which animal it was. Trackers also develop hypotheses on why the shape of hoofs is the way it is, and interpret activities of animals from the track – for example, identifying new ways of interpreting the behaviour of an animal that was not observer before. For example, the ability to guess that caracals are jumping upright in an attempt to catch a bird. CyberTracker started with the early Apple Newton with a GPS module, and then evolved into the Palm Pilot and continue to evolve. The interface was very limited in drawing icons – icons are either phonetic symbols (e.g. using a wheelbarrow to describe an item that sounds similar to the word in Africans). The details can be very extensive – species, age, number, male/female and so home. The data can provide information on abundance and potential of work are the communities. In a project in the Congo, they follow the trackers of different animals and they could show they Ebola impact Chimpanzees, Gorilla, but also other animals and then this was important to understand that you can identify Ebola in wildlife before it spreads into the human population. There is also a wide use of CyberTracker in citizen science on monitoring endangered species, and different projects by indigenous communities  Australia. They can also show that there are different results from what ecologists identify. A paper from 1999 about Rhino was co-authored by a tracker, demonstrating different models of publishing with citizen scientists. The first high impact that was co-authored by trackers was published recently in biological conservation. Questions: how to communicate from hypothesis by hunter-gatherers to the scientific sphere? The need is collaboration: data collected and organised by the trackers, and then the scientists write the report, but providing a report is challenging. The reality is co-authoring as there is always need for mentoring, reciprocal approach between scientists. Louis also circulates papers with experienced scientists to improve the paper. We all need peer review support. In terms of consent and engagement: there is a need to develop the relationship of trust and understanding – the first people who were involved in CyberTracker worked with Louis for 5 years, and Louis engaged as a tracker before they were willing to work with him. Some of the early papers in the Kalahari used trackers without mentioning their name even though the trackers carried out the research. Scientific institutions are one of the last authoritarians institutions – citizen science. Scientific elitism is intransigent and this makes citizen science exciting.

Lessons from supporting non-literate forest communities in the Congo-Basin to record their Traditional Ecological Knowledge – Michalis Vitos & Julia Altenbuchner the context of the Congo-basin is the second largest rainforest. This is a forest with 29 million people, with at least 500,000 nomadic communities that rely on resources. The forest is divided into concessions and then they are sued for resource extraction – how to make local groups heard? Local communities are excluded from protected areas. In the last few years, some legislation is changing – e.g. the FLEGT of the EU to control timber import and request for social payback and responsibility. ExCiteS collaborated with communities to support such process with technology. The challenges are dealing with non-literate groups who are also non-technologically literate. We use pictures as a way to communicate: the application working in a simple fashion – showing categories of things that people want to map, each category is leading to more specific options – the information can be captured and deciding if we want to save information and we can collect video and audio that are geotagged. In 3 simple steps, information can be captured. The process starts with a dialogue of what important for the communities, and then with this agreement on what will be collected. We do explore the usability of the application. About 70% can use the application, but 30% have a problem with categories – you follow a path of mapping banana, avocado and cacao – this requires categories, e.g. one of the set. Some participants found that confusing. Adding more icon to the category is becoming more complex. One approach was to test audio feedback in a local language – explaining the icons and what they mean. The experiments with the audio feedback help a bit, but not a lot. The next step was to go directly to the final icons and go directly to the final card – adding an NFC chip and adding the control to it. Participant finds the specific icon and then touch the card with the phone. With Tap&Map the success rate gets close to 100%.

Julia – the next issue is making sure that communities can manage their data- the vision is of intelligent maps  – having data collection, then local data repository and management, and then visualisation. But there is a challenge of the mapping and this was done by using UAVs and creating within a short time a high-resolution imagery. However, people don’t need maps as they know their area, but the maps are for communication. The maps are being used to check how the map is used – people felt under a lot of pressure when using the map. and the next experiment was not to put under pressure, and instead of doing a treasure hunt: going and looking for data by trying to find German Christmas decorations. The tracks of the people who participated in the study we can see how they looked for information. What we know is that people can use maps and understand them – the reference map. Now we want the thematic information – so when people take ownership and correct issues: this was done using the icons that were used as a resource and then to correct information. People were doing well in correcting information using a Tap&Map approach. We get feature corrections over 90%. This an ad-hoc approach: even without much exposure – we need to allow people to be sensors and the brains behind it.

Forest hunter-gatherers and Extreme Citizen Science: Reporting wildlife crime in collaboration with local and indigenous communities in Cameroon through community-led co-design – Simon Hoyte work in Cameroon for the last year and a half with Baka hunter-gatherers. Working in Cameroon in the south-east corner.Working with Dja reserve, working ZSL and 5 communities. In Cameroon, there are many issues with conservation – gorillas, chimpanzees, parrots, pangolins and elephants. Indigenous communities are lots of time are forgotten – those groups are familiar with the forest, with knowledge of 50,000 years and colonial approaches exclude. The technologies that are being used are Sapelli data collection tool, then there is the data management tool GeoKey and the CommunityMaps from Mapping for Change. The process starts with the community free prior informed consent – first starting with the concerns of the community and also building trust by staying overnight in the village and connect on a personal level. That is an important recommendation. Icons are being drawn from the sand, to a paper and then into the app. Functional actions changed from tick to thumbs app, or recording changed. XML layout of the project allow changes in the field. The second recommendation is the co-design that increases motivation. Audio and video are allowing information to be shared, including tracks – it allows a verification. Audio provides more information. Describing what people found. Indicators on the device are important – when recording is active a red icon allows you to see that something is working. The phone is checking for connection every 4 minutes. Using ID screen to recognise reported – can be used elsewhere. The community protocol also addresses who manage who will manage the phone and look after it. The report is upload and shared with the authorities – we need the diverse outcome. So in summary: trust building, co-design, media, feedback, simple tools, anonymous ID, community-led, and diverse outcomes. The map providing further more information.

Community based monitoring of tropical forests using information and communication technology (ICT) – Søren Brofeldt an example for a study that rely on Sapelli and expand the software to create the Prey Lang App: working in Cambodia, in the Prey Lang – 200,00 people who rely on the forest, and huge pressure of deforestation and a lot of the logging is illegal and it is supposed to be protected. The Prey Lang Community Network (PLCN) created around 2005-2007 and it is now a group of 600 people who are doing work over that last 10 years, and patrolling the area, confiscating chainsaw and catch wood and logs. Trying to address logging in the area. 2013 they try to communicate the problem to international society – to do what they wanted to set a forest monitoring programme and create a system to document illegal logging and provide evidence-based advocacy. The issue is to compile information and document breaches. The data is captured by Sapelli, and the information is validated by PLCN and scientists, which then helped in compiling report locally and globally, which then led to the positive platform. The platform was tweaked a bit and include information through a decision tree, they have different aspects. The things that they developed: unique functions – choosing icons or doing activities – they had basic activities in the first version: they have seen it as too simple. They started with 9 basic functions with 614 end-points of activities. By the third version, they had 9 functions, and 1663 options: types of trees, types of information, species and so on. They now have 10 functions (e.g. dropdown, word complete). Complexity does not lead to incorrect use (if training is adequate and added functionality is done in co-designed way). When people are experienced – people who use the app for 2 years can get into more complex functionality over time. Some of the issues with data – poor documents, double counting. over time, human errors are decreasing, and also technical issues. Poor connectivity and technical issue are a major issue – more than local ability to use. High quality is possible with active data management is needed.

Designing Human-Computer Interaction for Citizen Science Initiatives in Rural Developing Regions – Veljko Pejovic & Artemis Skarlatidou we need to understand how we move initiative from developed to developing regions in citizen science application. ICT4D point to environmental constraints: roads, electricity, There are also that this area lack skills in the workforce and cultural constraints. Clashes with assumptions. in the Extreme Citizen Science context: we need to identify solution adaptation in participatory design, there is a need for holistic implementation, and we need to make sure that we think about the whole process – from data collection to policy and this challenging. Finally, we also to consider the champions and engaging then (the book “Geek Heresy” by Toyama talks about it). The aim is to identify guidelines – this was done through participatory studies that are similar in the rural developing world and carried out 9 interviews with researchers with extensive experience in the field. An hour-long interviews x 2. The questions explored different aspects including interactions. The finding – need to mobilise the community by taking into account societal organisation (e.g. egalitarian aspects). Need to find local champions. We need to identify the ecosystem of the technology: chargers, cables. Also need to consider how the technology that was built to a different context work: rough fingertips, reflection in the screens and so on. There is also the issue of using hierarchical icon organisation which is pretty intuitive for educated people but it is challenging for participants (users) and also navigation buttons. This matches evidence from Medhi et al. Chi 2013. Juxtaposing this with illiterate users in urban Brazil, they managed to deal with hierarchical organisation and navigation – might be that the exposure to smartphones helped in developing these hierarchies. Icon design is different, but we can see that realistic icons with context are more suitable to use, not just an object. There are issues of actions and how to represent them. Getting honest feedback on the spot is a challenge – users don’t criticise before (Dell et al CHI 2012 – “yours is better”). Long trust relationship help in getting honest feedback. The participants lack the vocabulary to discuss HCI issues. To maintain motivation, there is a need to make data collection visible and ensure the real-world impact of data collection. Recommendation: develop context-specific apps – not genetic, and consider application interface that matches user’s skills and geographical information is a key.

Introducing user issues of the Global Forest Watch application – Jamie Gibson – developing with Vizzuality better maps and visualisation. Trying to think of citizen-focused GIS, interacting with the citizen in the design. Global Forests Watch (GFW) was developed in the last 3 years, and it is allowing to see the world’s forest and how they change. They wanted to tell a simple story: where forest is gained and lost. With few clicks, you can see the impact of conservation. GFW allow seeing how deforestation is implemented and how it is stopped. There is a need for global engagement – opening it to a whole crowd of people. Forest don’t have a connection to the web, and try to take data online to the field, walk to the area, investigate recent forest loss and report new areas – 4000-5000 users. They aim to integrate citizens into the design process. Forest Watcher is being used in important areas of the world and not where the most connected people area. They analyse where people use the app – when there are forest fires in Spain, people are updating GFW and explore. Use the analytics to find the places where we want more people to look and explore. This is integrated with interviews and usability testing. Working with experts who been working for a long time – including Jane Goodall Institute, Amazon Conservation Team, CAGDF, and BirdLife. As people use the application they build ownership and they provide a better feedback and richer information. In terms of what they learn, including the use of persona to think about monitors: need to have lots of other things that try to sync after the 14 days offline – the internet is slow and changed the app and the back end to make it faster. Use it to understand frustrations and find ways to wow moment. Face, name and story improve the quality of the thinking and understand their frustrations.

Lessons learned from Missing Maps – Jorieke Vyncke Her personal background is in interest in work that links to humanitarian purposes, and since 2017 is the missing maps coordinator. She is looking at the humanitarian organisation focus -more than 34,000 staffers in MSF and about 470 locations around the world. In many parts of the world there are empty maps and not geographical data. They discover OpenStreetMap and working with the American and British Red Cross, HOT and over 40 partners. They have principles from the Ostrom on working with groups. They compare rural and urban parts. In Idjiwi in DRC, the east of Congo – working with a multitude of problems: violence, refugees and more. Due to a measles outbreak, they needed population and mapping data. Included 250 remote volunteers who mapped 28,000 building in about a week. This helped in creating population estimation – critical for the logistical planning. They managed to identify 94% of the population. An example from Bangladesh in Hazaribagh informal settlement. The area was mapped with both local and remote mapping – including factories and tanneries – locating the workers that they wanted to reach – combining students from the university with workers that were reached through the union. The experience of mapping is done by the technical local students to make things happen. Using smartphones and field papers process. Paper is still effective, and then also the edit data in pairs on how to do the mapping – the end result provided an occupational health survey. The process motivated the community and they continue to use it. In different areas, they use remote mapping but the most important thing is to create a local mapping community and that makes a decision between empowerment and remote mapping with the importance of saving life.

Keynote: Approximated Reality: the use of digital tools by traditional communities in the Amazon – Vasco van Roosmalen working in Ecam – Equipe Conservacao Amazonia in Brazil since 1999. The big challenge is how to reconcile different visions of what the world is. In the Xingu area in Brazil, there was a need to create an ethno-map of the region. The community discusses what they want to map and how they want to represent them, but it also needed to be cartographically accurate as this is how you communicate with external bodies. The whole map is created for the community: to use resources, to remember the dead and to defend their land (using patterns of body paint). We can see that protected areas in the Xingu. Another area that he was involved in mapping is near Surinam – in an area the size of Holland with 2000 people, the community recorded information about their region. This helped in justifying the resources and the protection of the area. An area that is very rough to access, and the local survey by the community managed to map the area done that in 6 maps. The community collected much more data than what the map can show – over the coming years, they mapped with different groups millions of hectares and they developed a process of creating the maps. The collaboration with Google Earth Outreach led to the interaction with Chief Amir of the Surui. The link with commitment with Rebecca Moore helped in filling up areas that are missing and attaching video and audio to the map. They then wanted to record illegal logging using mapping tools and this was done with OpenDataKit – the data collection challenges are accuracy, ease of use, speed, etc. In 2008 started to understand REDD and developed the Surui Carbon Project – need a tremendous amount of data from the air and from the ground. The use of information such as the circumference of trees was done with ODK. They use Garmin devices: they weren’t scratch resistance. Now they use a Samsung smartphones that are cheap and can be replaced easily. For the GPS in the rainforest, it is challenging and they use barcode on the trees. They used the ODK build but discovered that it is not an easy interface: using a programmer in the staff and that is a limitation in terms of allowing to build forms easily. The project managed to demonstrate that indigenous people can collect data but the REDD credits were more challenging and they got them in 2013. Cultural maps where created in other indigenous lands in Brazil. The importance not just to demarcate the land but to collect data and help them to manage the area. Today there are many challenges – 13% of the Brazilian territory. In the Brazilian Amazon, there are many communities – 25 mil people of which only 350,00 indigenous for example, Quilombola groups and many other groups. There was no information on other groups and some of them are disadvantaged – e.g. Quilombola required mapping 7000 communities, they are descendent of West African slaves – they were persecuted, faced a lot of violence, and when slavery was abolished they were forgotten, but from the 1980s they are recognised in the constitution, but not enough recognised officially. His team was involved in creating a new map of the 7000 communities for which only on a team of 40 is looking after in the government level in Brasilia. They used approaches that are similar to the Indigenous mapping in order to record information and manage the land. They had people who became experts in mapping and then demonstrating how to map the land using google earth and demonstrating data collection. The communities also collect socio-economic data – using ODK and understanding their community and developing a life plan for the area (plan for the next 10-30 years). The question is who is listening to the information but by whom. A social network analysis of Facebook (which is 83% of users in Brazil use) Looking at interactions show that local association are not linked to environment, human right and there is missing links to health, to a specific campaign on the Belo Monte Power Plant but it is not linked to the community. They care about health, education, income, and only fifth is the environment – need to talk about what matters to communities. How to make conversations about them in the centre of the discussion and move beyond putting them in the corner of the environment. We need to engage with people with their communities in a way that makes sense to them.

 

 

 

 

 

 

 

New paper: Usability and interaction dimensions of participatory noise and ecological monitoring

The EveryAware book provided an opportunity to communicate the results of a research that Dr Charlene Jennett led, together with two Masters students: Joanne (Jo) Summerfield and Eleonora (Nora) Cognetti, with me as an additional advisor. The research was linked to the EveryAware, since Nora explored the user experience of WideNoise, the citizen science noise monitoring app that was used in the project. There is also a link to the Citizen Cyberlab project, since Jo was looking at the field experience in ecological observation, and in particular during a BioBlitz. The chapter provides a Human-Computer Interaction (HCI) perspective to the way technology is used in citizen science projects. You can download the paper here and the proper citation for the chapter is:

Jennett, C., Cognetti, E., Summerfield, J. and Haklay, M. 2017. Usability and interaction dimensions of participatory noise and ecological monitoring. In Loreto, V., Haklay, M., Hotho, A., Servedio, V.C.P, Stumme, G., Theunis, J., Tria, F. (eds.) Participatory Sensing, Opinions and Collective Awareness. Springer. pp.201-212.

The official version of the paper is on Springer site here.

Citizen Cyberlab Summit (day 2)

DSCN1165The second day of the Citizen Cyberlab Summit followed the same pattern of the first day: Two half day sessions, in each one short presentations from guest speakers from outside the project consortium, followed by two demonstrations of specific platform, tool, pilot or learning, and ending with discussion in groups, which were then shared back.

The first session started with History of Citizen Sciences – Bruno Strasser (Uni Geneva) – looking at both practical citizen science and the way it is integrated into the history of science. The Bioscope is a place in Geneva that allowing different public facing activities in the medical and life science: biodiversity, genetic research etc. They are developing new ways of doing microscopy – a microscope which is sharing the imagery with the whole room so it is seen on devices and on turning the microscope from solitary experience to shared one. They are involved in biodiversity research that is aimed to bar-coding DNA of different insects and animals. People collect data, extract DNA and sequence it, and then share it in a national database. Another device that they are using is a simple add-on that turns a smartphone can be turned into powerful macro camera, so children can share images on instagram with bioscope hashtag. They also do ‘Sushi night’ where they tell people what fish you ate if at all…
This link to a European Research Council (ERC) project  – the rise of citizen sciences – on the history of the movement. Is there something like ‘citizen sciences’? From history of science perspective, in the early 20c the amateur scientist is passing and professionals are replacing it. He use a definition of citizen science as amateurs producing scientific knowledge – he is not interested in doing science without the production of knowledge. He noted that there are a lot of names that are used in citizen science research. In particular, the project focus is on experimental sciences – and that because of the laboratory revolution of the 1930s which dominated the 20th century. The lab science created the divide between the sciences and the public (Frankenstein as a pivotal imagery is relevant here). Science popularisation was trying to bridge the gap to the public, but the rise in experimental sciences was coupled with decline of public participation. His classification looks at DIYbio to volunteer computing – identifying observers, analysers etc. and how they become authors of scientific papers. Citizen science is taken by the shift in science policy to science with and for society. Interest in the promises that are attached to it: scientific, educational (learning more about science) and political (more democratic). It’s interesting because it’s an answer to ‘big data’, to the contract of science and society, expertise, participation and democratisation. The difference is demonstrated in the French response following Chernobyl in 1986, with presentation by a leading scientists in France that the particle will stop at the border of France, compared that to Deep Horizon in 2010 with participatory mapping through public lab activities that ‘tell a different story’. In the project, there are 4 core research question: how citizen science transform the relationship between science and society? who are the participants in the ‘citizen sciences’ – we have some demographic data, but no big picture – collective biography of people who are involved in it. Next, what is the ‘moral economies’ that sustain the citizen sciences? such as the give and take that people get out of project and what they want. Motivations and rewards. Finally, how do citizen sciences impact the production of knowledge? What is possible and what is not. He plan to use approaches from digital humanities process. He will build up the database about the area of citizen science, and look at Europe, US and Asia. He is considering how to run it as participatory project. Issues of moral economies are demonstrated in the BOINC use in commercial project. 

Lifelong learning & DIY AFM – En-Te Hwu (Edwin) from Academia Sinica, Taiwan). There are different ways of doing microscopy at different scales – in the past 100 years, we have the concept of seeing is believing, but what about things that we can’t see because of the focused light of the microscope – e.g. under 1 micron. This is possible with scanning electron microscope which costs 500K to 2M USD, and can use only conductive samples, which require manipulation of the sample. The Atomic Force Microscope (AFM) is more affordable 50K to 500K USD but still out of reach to many. This can be used to examine nanofeatures – e.g. carbon nanotubes – we are starting to have higher time and spatial resolution with the more advanced systems. Since 2013, the LEGO2NANO project started – using the DVD head to monitor the prob and other parts to make the AFM affordable. They put an instructable prototype that was mentioned by the press and they called it DIY AFM. They created an augmented reality tool to guide people how to put the device together, and it can be assembled by early high school students – moving from the clean room to the class room.  The tool is being used to look at leafs, CDs – area of 8×8 microns and more. The AFM data can be used with 3D printing – they run a summer school in 2015 and now they have a link to LEGO foundation. They are going through a process of reinventing the DIY AFM, because of patenting and intellectual property rights (IPR) – there is a need to rethink how to do it. They started to rethink the scanner, the control and other parts. They share the development process (using building process platform of MIT media lab). There is a specific application of using the AFM for measuring air pollution at PM2.5. using a DVD – exposing the DVD by removing the protection layer, exposing it for a period of time and then bringing it and measuring the results. They combined the measurements to crowdcrafting for analysis. The concept behind the AFM is done by using LEGO parts, and scanning the Lego points as a demonstration, so students can understand the process. 

wpid-wp-1442566370890.jpgThe morning session included two demonstrations. First, Creativity in Citizen Cyberscience – Charlene Jennett  (UCLIC, UCL) – Charlene is interested in psychological aspects of HCI. Creativity is a challenge in the field of psychology. Different ideas of what is creativity – one view is that it’s about eureka moment as demonstrated in Foldit breakthrough. However, an alternative is to notice everyday creativity of doing thing that are different, or not thought off original. In cyberlab, we are looking at different projects that use technologies and different context. In the first year, the team run interviews with BOINC, Eyewire, transcribe Bentham, Bat Detective, Zooniverse and Mapping for Change – a wide range of citizen science projects. They found many examples  – volunteers drawing pictures of the ships that they were transcribing in Old Weather, or identifying the Green Peas in Galaxy zoo which was a new type of galaxy. There are also creation of chatbots about their work -e.g. in EyeWire to answer questions, visualisation of information, creating dictionaries and further information. The finding showed that the link was about motivation leading to creativity to help the community or the project. They created the model of linking motivation, learning through participation, and volunteer identity that lead to creativity. The tips for projects include: feedback on project progress at individual and project level, having regular communication – forum and social media, community events – e.g. competitions in BOINC, and role management – if you can see someone is doing well, then encourage them to take more responsibility. The looked at the different pilots of Cyberlab – GeoTag-X, Virtual Atom Smasher, Synthetic Biology through iGEM and Extreme Citizen Science. They interview 100 volunteers. Preliminary results – in GeoTag-X, the design of the app is seen as the creative part, while for the analysts there are some of the harder tasks – e.g. the georeferencing of images and sharing techniques which lead to creative solutions. In the iGEM case they’ve seen people develop games and video. in the ExCiteS cases, there is DIY and writing of blog posts and participants being expressive about their own work. There are examples of people creating t-Shirt, or creating maps that are appropriate for their needs.They are asking questions about other projects and how to design for creativity. It is interesting to compare the results of the project to the definition of creativity in the original call for the project. The cyberlab project is opening up questions about creativity more than answering them. 

wpid-wp-1442679548581.jpgPreliminary Results from creativity and learning survey – Laure Kloetzer (university of Geneva). One of the aims of Citizen Cyberlab was to look at different aspects of creativity. The project provided a lot of information from a questionnaire about learning and creativity in citizen science. The general design of the questionnaire was to learn the learning outcomes. Need to remember that out of the whole population, small group participate in citizen science – and within each project, there is a tiny group of people that do most of the work (down to 16 in Transcribed Bentham) and the question of how people turn from the majority, who do very little work to highly active participants is unknown, yet. In Citizen Cyberlab we carried out interviews with participants in citizen science projects, which led to a typology of learning outcomes – which are lot wider than those that are usually expected or discussed in the literature – but they didn’t understand what people actually learn. The hypothesis is that people who engage with the community can learn more than those that doesn’t – the final questionnaire of the project try to quantify learning outcomes (informal learning in citizen science – ILICS survey). The questionnaire was tested in partial pilot. Sent to people in volunteer computing, volunteer thinking and others types. They had about 700 responses, and the analysis only started. Results – age group of participants is diverse from 20-70, but need to analyse it further according to projects. Gender – 2/3 male, third female, and 20% of people just have high school level of education, with 40% with master degree or more – large minority of people have university degree. They got people from 64 countries – US, UK, Germany and France are the main ones (the survey was translated to French). Science is important to most, and a passion for half, and integrated in their profession (25% of participants). Time per week – third of people spend less than 1 hour, and 70% spend 1-5 hours – so the questionnaire captured mostly active people. Results on learning – explore feeling, what people learn, how they learn and confidence (based on the typology from previous stages of the project). The results show that – people who say that they learn something to a lot, and most people accept that they learn on-topic knowledge (about the domain itself – 88%), scientific skills (80%), technological skills (61%), technical skills (58%), with political, collaboration skills and communication skills in about 50% of the cases. The how question – people learn most from project documentation (75%) but also by external resources (70%). Regarding social engagement, about 11% take part in the community, and for 61% it’s the first time in their life that they took such a role. There are different roles – translation, moderating forums with other things in the community that were not recognised in the questionnaire. 25% said that they met people online to share scientific interests – opportunity to share and meet new people. Learning dimensions and types of learners – some people feel that they learn quite a lot about various things, while others focus on specific types of learning. wpid-wp-1442679528037.jpgPrincipal Component Analysis show that learner types correlate with different forms of engagement – more time spent correlate to specific type of learner. There are different dimensions of learning that are not necessarily correlate. The cluster analysis show about 10 groups – people who learn a lot on-topic and about science with increase self-confidence. Second group learn on topic but not much confidence. Group 3, like 2 but less perception of learning. Group 4 don’t seem to learn much but prefer looking at resources. 5 learn somewhat esp about computers. 6 learn through other means. 7 learn by writing and communicating, collaborating and some science. 8 learn only about tools, but have general feeling of learning. 9 learn on topic but not transferable and 10 learn a lot on collaboration and communication – need to work more on this, but these are showing the results and the raw data will be shared in December. 

DSCN1160Following the presentation, the group discussion first explored examples of creativity from a range of projects. In crowdcrafting, when people are not active for a month, they get email with telling them that they will be deleted – one participant created activities that link to the project – e.g. tweeting from a transcriptions from WW I exactly 100 years after it happen. In Cornell Lab of Ornithology, volunteers suggest new protocols and tasks about the project – new ways of modifying things. In the games of ScienceatHome are targeted specifically to explore when problem solving become creative – using the tools and explaining to the researchers how they solve issues. In WCG one volunteered that create graphics from the API that other volunteers use and expect now to see it as part of the project. There is a challenge to project coordinators what to do with such volunteers – should they be part of the core project?
Next, there are questions about roles – giving the end users enough possibilities is one option, while another way is to construct modularising choices, to allow people to combine them in different ways. In ScienceatHome they have decided to put people into specific modes so consciously changing activities. There is wide variety of participants – some want to be fairly passive and low involvement, while other might want to do much more. Also creativity can express itself in different forms, which are not always seem linked to the project. The learning from Citizen Cyberlab is that there isn’t simple way of linking creativity and capture it in computer software, but that you need organisational structure and most importantly, awareness to look out for it and foster it to help it develop. Having complementarity – e.g. bringing game people and science people to interact together is important to creativity. Another point is to consider is to what degree people progress across citizen science projects and type of activities – the example of Rechenkraft.net that without the hackspace it was not possible to make things happen. So it’s volunteers + infrastructure and support that allow for creativity to happen. There are also risks – creating something that you didn’t know before – ignorance – in music there isn’t much risk, but in medical or synthetic biology there can be risks and need to ask if people are stopping their creativity when they see perceived risks.

wpid-wp-1442679513070.jpgThe final session of the summit was dedicated to Evaluation and Sustainability. Starting with The DEVISE project – Tina Philips (Cornell Lab of Ornithology). Tina is involved in the public engagement part of Cornell Lab of Ornithology . Starting from the work on the 2009 of the Public Participation in Scientific Research (PPSR) report – the finding from the CAISE project that scarcity of evaluations, higher engagement suggested deeper learning, and need for a more sensitive measures and lack of overall finding that relate to many projects. The DEVISE project (Developing, Validating, and Implementing Situated Evaluation Instruments) focused on evaluation in citizen science overall – identifying goals and outcomes, building professional opportunities for people in the field of informal learning, and creating a community of practice around this area. Evaluation is about improving the overall effectiveness of programmes and projects. Evaluation is different from research as it is trying to understand strengths and weaknesses of the specific case and is less about universal rules – it’s the localised learning that matter. In DEVISE, they particularly focused on individual learning outcomes. The project used literature review, interviews  with participants, project leaders and practitioners to understand their experience. They looked at a set of different theories of learning. This led to a framework for evaluating PPSR learning outcomes. The framework includes aspects such as interest in science & the environment, self efficacy, motivation, knowledge of the nature of science, skills of science inquiry, and behaviour & stewardship. They also develop scales – short surveys that allow to examine specific tools – e.g. survey about interest in science and nature or survey about self-efficacy for science. There is a user guide for project evaluators that allow to have plan, implement and share guidance. There is a logic model for evaluation that includes Inputs, activities, outputs, short-term and long-term impacts. It is important to note that out of these, usually short and long terms outcomes are not being evaluated. Tina’s research looked at citizen science engagement, and understand how they construct science identity. Together with Heidi Ballard, they looked at contributory, collaborative and co-created projects – including Nestwatch, CoCoRaHS, and Global Community Monitor. They had 83 interviews from low , medium and high contributors and information from project leaders. The data analysis is using qualitative analysis methods and tools (e.g. Nvivo). The interview asked about engagement and what keep participants involved and asking about memorable aspects of their research involvement. There are all sort of extra activities that people bring into interviews – in GCM people say ‘it completely changes the way that they respond to us and actually how much time they even give us because previously without that data, without something tangible’ – powerful experiences through science. The interviews that were coded show that data collection, communicating with others and learning protocols are very common learning outcomes. About two-third of interviewees are also involved in exploring the data, but smaller group analyse and interpret it. Majority of people came with high interest in science, apart of the people who are focused on local environmental issues of water or air quality. Lower engagers tend to feel less connected to the project – and some crave more social outlets. The participants have a strong understanding of citizen science and their role in it. Data transparency is both a barrier and facilitator – participants want to know what is done with their data. QA/QC is important personally and organisationally important. Participants are engaged in wide range of activities beyond the project itself. Group projects may have more impact than individual projects.
Following the presentation, the discussion explore the issue of data – people are concerned about how the data is used, and what is done with it even if they won’t analyse it themselves. In eBird, you can get your raw data, and checking the people that used the data there is the issue of the level in which those who download the data understand how to use it in an appropriate way. 

wpid-wp-1442679499689.jpgThe final guest presentation was Agroecology as citizen science – Peter Hanappe (Sony Computer Science Lab, Paris).  Peter is interested in sustainability, and in previous projects he was involved in working on accessibility issues for people who use wheelchair, the development of NoiseTube, or porting ClimatePrediction BOINC framework to PlayStation, and reducing energy consumption in volunteer computing. In his current work he looks at sustainability in food systems. Agroecology is the science of sustainable agriculture, through reducing reliance on external inputs – trying to design productive ecosystems that produce food. Core issues include soil health and biodiversity, with different ways of implementing systems that will keep them productive. The standard methods of agriculture don’t apply, and need to understand local conditions and the practice of agroecology is very knowledge intensive. Best practices are not always studied scientifically – with many farms in the world that are small (below 2 hectares, 475 millions farms across the world). There are more than 100M households around the world that grow food.  This provide the opportunity for citizen science – each season can be seen as an experiment, with engaging more people and asking them to share information so the knowledge slowly develops to provide all the needed details. Part of his aim is to develop new, free tools and instruments to facilitate the study of agroecology. This can be a basic set with information about temperature and humidity or more complex. The idea to have local community and remote community that share information on a wiki to learn how to improve. Together with a group of enthusiasts that he recruited in Paris, they run CitizenSeeds where they tried different seeds in a systematic way – for example, with a fixed calendar of planting and capturing information People took images and shared information online. The information included how much sunlight plants get and how much humidity the soil have. on p2pfoodlab.net they can see information in a calendar form. They had 80 participants this year. Opportunity for citizen science – challenges include community building, figuring out how much of it is documentation of what worked, compared to experimentation – what are the right way to carry out simple, relevant, reproducible experiments. Also if there is focus on soil health, we need multi-year experiments.  


I opened the last two Demonstrations of the session with a description of the 
Extreme Citizen Science pilots – starting similarly to the first presentation of the day, it is useful to notice the three major period in science (with regard to public participation). First, the early period of science when you needed to be wealthy to participate – although there are examples like Mary Anning, who. for gender, religion and class reasons was not accepted within the emerging scientific establishment as an equal, and it is justified to describe her as citizen scientists, although in full time capacity. However, she’s the exception that point to the rule. More generally, not only science was understood by few, but also the general population had very limited literacy, so it was difficult to engage with them in joint projects. During the period of professional science, there are a whole host of examples for volunteer data collection – from phenology to meteorology and more. As science became more professional, the role of volunteered diminished, and scientists looked for automatic sensors as more reliable mean to collect information. At the same time, until the late 20th century, most of the population had limited education – up to high school mostly, so the tasks that they were asked to perform were limited to data collection. In the last ten years, there are many more people with higher education – especially in industrialised societies, and that is part of the opening of citizen science that we see now. They can participate much more deeply in projects.
Yet, with all these advances, citizen science is still mostly about data collection and basic analysis, and also targeted at the higher levels of education within the population. Therefore, Extreme Citizen Science is about the extremities of citizen science practice – engage people in the whole scientific process, allow them to shape data collection protocols, collect and analyse the data, and use it in ways that suit their goals. It is also important to engage people from all levels of literacy, and to extend it geographically across the world.
The Extreme Citizen Science (ExCiteS) group is developing methodologies that are aimed at facilitating this vision. Tool like GeoKey, which is part of the Cyberlab project, facilitate community control over the data and decision what information is shared and with whom. Community Maps, which are based on GeoKey are way to allow community data collection and visualisation, although there is also a link to EpiCollect, so mobile data collection is possible and then GeoKey managed the information.
These tools can be used for community air quality monitoring, using affordable and accessible methods (diffusion tubes and borrowed black carbon monitors), but also the potential of creating a system that will be suitable for people with low level of literacy. Another pilot project that was carried out in Cyberlab included playshops and exploration of scientific concepts through engagement and play. This also include techniques from Public Lab such as kite and balloon mapping, with potential of linking the outputs to community maps through GeoKey. 

 Finally, CCL Tracker was presented by Jose Luis Fernandez-Marquez (CERN) – the motivations to create the CCL tracker is the need to understand more about participants in citizen cyberscience projects and what they learn. Usual web analytics  provide information about who is visiting the site, how they are visiting and what they are doing. Tools like Google analytics – are not measuring what people do on websites. We want to understand how the 20% of the users doing 80% of the work in citizen cyberscience projects and that require much more information. Using an example of Google Analytics from volunteer computing project, we can see about 16K sessions, 8000 users, from 108 countries and 400 sessions per day. Can see that most are males – we can tell which route they arrived to the website, etc. CCL tracker help to understand the actions performed in the site and measure participants contribution. Need to be able to make the analytics data public and create advanced data aggregation – clustering it so it is not disclosing unwanted details about participants. CCL tracker library work together with Google tag manager and Google analytics. There is also Google Super Proxy to share the information. 

New paper: Footprints in the sky – using student track logs in Google Earth to enhance learning

screen shot for paperIn 2011-2012, together with Richard Treves, I was awarded a Google Faculty Research Award, and we were lucky to work with Paolo Battino for about a year, exploring how to use Google Earth tours for educational aims. The details of the projects and some reports from the project are available on Richard’s blog, who was leading on many aspects of the work. Now, over 2 years since the end of the project, we have a publication in the Journal of Geography in Higher Education. The paper, titled ‘Footprints in the sky: using student track logs from a “bird’s eye view” virtual field trip to enhance learning’, is now out and describes the methodology that we developed for tracking students’ actions.

The abstract of the paper is:

Research into virtual field trips (VFTs) started in the 1990s but, only recently, the maturing technology of devices and networks has made them viable options for educational settings. By considering an experiment, the learning benefits of logging the movement of students within a VFT are shown. The data are visualized by two techniques: “animated path maps” are dynamic animations of students’ movement in a VFT; “paint spray maps” show where students concentrated their visual attention and are static. A technique for producing these visualizations is described and the educational use of tracking data in VFTs is critically discussed.

The paper is available here, and special thanks to Ed Parsons who advised us during the project.

Kindle Maps and E Ink properties

CHI 2013 and GeoHCI workshop highlighted to me the importance of understanding media for maps. During CHI, the ‘Paper Tab’ demonstration used E-Ink displays to demonstrate multiple displays interaction. I found the interactions non-intuitive and not mapping very well to what you would expect to do with paper, so a source for confusion – especially when they will eventually be mixed with papers on a desk. Anyhow, it is an interesting exploration.

E Ink displays are very interesting in terms of the potential use for mapping. The image  below shows one of the early prototypes of maps that are designed specifically for the Kindle, or, more accurately, to the E Ink technology that is at heart of the Kindle. From a point of view of usability of geographical information technologies, the E Ink is especially interesting. There are several reasons for that.

Kindle map

First, the resolution of the Kindle display is especially high (close to 170 Pixels Per Inch) when the size of screen is considered. The Apple Retina display provide even better resolution and in colour and that makes maps on the iPad also interesting, as they are starting to get closer to the resolution that we are familiar with from paper maps (which is usually between 600 and 1200 Dot Per Inch). The reason that resolution matter especially when displaying maps, because the users need to see the context of the location that they are exploring. Think of the physiology of scanning the map, and the fact that capturing more information in one screen can help in understanding the relationships of different features. Notice that when the resolution is high but the screen area is limited (for example the screen of a smartphone) the limitations on the area that is displayed are quite severe and that reduce the usability of the map – scrolling require you to maintain in your memory where you came from.

Secondly, E Ink can be easily read even in direct sunlight because they are reflective and do not use backlight. This make them very useful for outdoor use, while other displays don’t do that very well.

Thirdly, they use less energy and can be used for long term display of the map while using it as a reference, whereas with most active displays (e.g. smartphone) continuous use will cause a rapid battery drain.

On the downside, E Ink refresh rates are slow, and they are more suitable for static display and not for dynamic and interactive display.

During the summer of 2011 and 2012, several MSc students at UCL explore the potential of E Ink for mapping in detail. Nat Evatt (who’s map is shown above) worked on the cartographic representation and shown that it is possible to create highly detailed and readable maps even with the limitation of 16 levels of grey that are available. The surprising aspects that he found is that while some maps are available in the Amazon Kindle store (the most likely place for e-book maps), it looks like the maps where just converted to shades of grey without careful attention to the device, which reduce their usability.

The work of Bing Cui and Xiaoyan Yu (in a case of collaboration between MSc students at UCLIC and GIScience) included survey in the field (luckily on a fairly sunny day near the Tower of London) and they explored which scales work best in terms of navigation and readability. The work shows that maps at scale of 1:4000 are effective – and considering that with E Ink the best user experience is when the number of refreshes are minimised that could be a useful guideline for e-book map designers.

CHI 2013: sustainability, development and activism

As I’ve noted in the previous post, I have just attended CHI (Computer-Human Interaction) conference for the first time. It’s a fairly big conference, with over 3000 participants, multiple tracks that evolved over the 30 years that CHI have been going,  including the familiar paper presentations, panels, posters and courses, but also the less familiar ‘interactivity areas’, various student competitions, alt.CHI or Special Interest Groups meetings. It’s all fairly daunting even with all my existing experience in academic conferences. During the GeoHCI workshop I have discovered the MyCHI application, which helps in identifying interesting papers and sessions (including social recommendations) and setting up a conference schedule from these papers. It is a useful and effective app that I used throughout the conference (and wish that something similar can be made available in other large conferences, such as the AAG annual meeting).

With MyCHI in hand, while the fog started to lift and I could see a way through the programme, the trepidation about the relevance of CHI to my interests remained and even somewhat increased, after a quick search of the words ‘geog’,’marginal’,’disadvantage’ returned nothing. The conference video preview (below) also made me somewhat uncomfortable. I have a general cautious approach to the understanding and development of digital technologies, and a strong dislike to the breathless excitement from new innovations that are not necessarily making the world a better place.

Luckily, after few more attempts I have found papers about ‘environment’, ‘development’ and ‘sustainability’. Moreover, I discovered the special interest groups (SIG) that are dedicated to HCI for Development (HCI4D) and HCI for Sustainability and the programme started to build up. The sessions of these two SIGs were an excellent occasion to meet other people who are active in similar topics, and even to learn about the fascinating  concept of ‘Collapse Informatics‘ which is clearly inspired by Jared Diamond book and explores “the study, design, and development of  sociotechnical systems in the abundant present for use in a future of scarcity“.

Beyond the discussions, meeting people with shared interests and seeing that there is a scope within CHI to technology analysis and development that matches my approach, several papers and sessions were especially memorable. The studies by Elaine Massung an colleagues about community activism in encouraging shops to close the doors (and therefore waste less heating energy) and Kate Starbird on the use of social media in passing information between first responders during the Haiti earthquakeexplored how volunteered, ‘crowd’ information can be used in crisis and environmental activism.
Exploring a map next to Paire Lachaise
Other valuable papers in the area of HCI for development and sustainability include the excellent longitudinal study by Susan Wyche and Laura Murphy on the way mobile charging technology is used in Kenya , a study by Adrian Clear and colleagues about energy use and cooking practices of university students in Lancastera longitudinal study of responses to indoor air pollution monitoring by Sunyoung Kim and colleagues, and an interesting study of 8-bit, $10 computers that are common in many countries across the world by Derek Lomas and colleagues.

TheCHI at the Barricades – an activist agenda?‘ was one of the high points of the conference, with a showcase of the ways in which researchers in HCI can take a more active role in their research and lead to social or environmental change, and considering how the role of interactions in enabling or promoting such changes can be used to achieve positive outcomes. The discussions that followed the short interventions from the panel covered issues from accessibility to ethics to ways of acting and leading changes. Interestingly, while some presenters were comfortable with their activist role, the term ‘action-research’ was not mentioned. It was also illuminating to hear Ben Shneiderman emphasising his view that HCI is about representing and empowering the people who use the technologies that are being developed. His call for ‘activist HCI’ provides a way to interpret ‘universal usability‘ as an ethical and moral imperative.

It was good to see the work of the Citizen Sort team getting into the finalists of the students game competition, and to hear about their development of citizen science games.

So despite the early concerned, CHI was a conference worth attending and the specific jargon of CHI now seem more understandable. I wish that there was on the conference website a big sign ‘new to CHI? Start here…’