GSF-NESTI Open Science & Scientific Excellence workshop – researcher, participants, and institutional aspects

The Global Science Forum – National Experts on Science and Technology Indicators (GSF-NESTI) Workshop on “Reconciling Scientific Excellence and Open Science” (for which you can see the full report here) asked the question “What do we want out of science and how can we incentivise and monitor these outputs?”. In particular, the objective of the workshop was “to explore what we want out of public investment in science in the new era of Open Science and what might be done from a policy perspective to incentivise the production of desired outputs.” with an aim to explore the overarching questions of:
1. What are the desirable (shorter-term) outputs and (longer-term) impacts that we expect from Open Science and what are potential downsides?
2. How can scientists and institutions be incentivised to produce these desirable outcomes and manage the downsides?
3. What are the implications for science monitoring and assessment mechanisms?

The session that I was asked to contribute to focused on Societal Engagement: “The third pillar of Open Science is societal engagement. Ensuring open access to scientific information and data, as considered in the previous sessions, is one way of enabling societal engagement in science. Greater access to the outputs of public research for firms is expected to promote innovation. However, engaging with civil society more broadly to co-design and co-produce research, which is seen as essential to addressing many societal challenges, will almost certainly require more pro-active approaches.
Incentivising and measuring science’s engagement with society is a complex area that ranges across the different stages of the scientific process, from co-design of science agendas and citizen science through to education and outreach. There are many different ways in which scientists and scientific institutions engage with different societal actors to informing decision-making and policy development at multiple scales. Assessing the impact of such engagement is difficult and is highly context and time-dependent“.

For this session, the key questions were

  • “What do we desire in terms of short and long-term outputs and impacts from societal engagement?
  • How can various aspect of scientific engagement be incentivised and monitored?
  • What are the necessary skills and competencies for ‘citizen scientists’ and how can they be developed and rewarded?
  • How does open science contribute to accountability and trust?
  • Can altmetrics help in assessing societal engagement?”

In my talk, I’ve decided to address the first three questions, by reflecting on my personal experience (so the story of a researcher trying to balance the “excellence” concepts and “societal engagement”), then consider the experience of the participants in citizen science projects, and finally the institutional perspective.


I’ve started my presentation [Slide 3] with my early experiences in public engagement with environmental information (and participants interest in creating environmental information) during my PhD research, 20 years ago. This was a piece of research that set me on the path of societal engagement, and open science – for example, the data that we were showing was not accessible to the general public at the time, and I was investigating how the processes that follow the Aarhus convention and use of digital mapping information in GIS can increase public engagement in decision making. This research received a small amount of funding from UCL, and later from ESRC, but not significantly.

I then secured an academic position in 2001, and it took to 2006 [Slide 4] to develop new systems – for example, this London Green Map was developed shortly after Google Maps API became available, and while this is one of the first participatory GIS applications on to of this novel API, this was inherently unfunded (and was done as an MSc project). Most of my funded work at this early stage of my career had no link to participatory mapping and citizen science. This was also true for the research into OpenStreetMap [Slide 5], which started around 2005, and apart from a small grant from the Royal Geographical Society, was not part of the main funding that I secured during the period.

The first significant funding specifically for my work came in 2007-8, about 6 years into my academic career [Slide 6]. Importantly, it came because the people who organised a bid for the Higher Education Innovation Fund (HEIF), realised that they are weak in the area of community engagement and the work that I was doing in participatory mapping fit into their plans. This became a pattern, where people approach with a “community engagement problem” – so there is here a signal that awareness to societal engagement started to grow, but in terms of the budget and place in the projects, it was at the edge of the planning process. By 2009, the investment led to the development of a community mapping system [Slide 7] and the creation of Mapping for Change, a social enterprise that is dedicated to this area.

Fast forward to today [Slide 8-10], and I’m involved in creating software for participatory mapping with non-literate participants, that support the concept of extreme citizen science. In terms of “scientific excellence”, this development, towards creating a mapping system that anyone, regardless of literacy can use [Slide 11] is funded as “challenging engineering” by EPSRC, and as “frontier research” by the ERC, showing that it is possible to completely integrated scientific excellence and societal engagement – answering the “reconciling” issue in the workshop. A prototype is being used with ZSL to monitor illegal poaching in Cameroon [Slide 12], demonstrating the potential impact of such a research.

It is important to demonstrate the challenges of developing societal impact by looking at the development of Mapping for Change [Slide 13]. Because it was one of the first knowledge-based social enterprises that UCL established, setting it up was not simple – despite sympathy from senior management, it didn’t easily fit within the spin-off mechanisms of the university, but by engaging in efforts to secure further funding – for example through a cross universities social enterprise initiatives – it was possible to support the cultural transformation at UCL.

There are also issues with the reporting of the impact of societal engagement [Slide 14] and Mapping for Change was reported with the REF 2014 impact case studies. From the universities perspective, using these cases is attractive, however, if you recall that this research is mostly done with limited funding and resources, the reporting is an additional burden which is not coming with appropriate resources. This lack of resources is demonstrated by Horizon 2020, which with all the declarations on the importance of citizen science and societal engagement, dedicated to Science with and for Society only 0.60% of the budget [Slide 15].

Participant experience

Alice Sheppard presenting her escallatorWe now move to look at the experience of participants in citizen science projects, pointing that we need to be careful about indicators and measurements.

We start by pointing to the wide range of activities that include public engagement in science [Slide 17-18] and the need to provide people with the ability to move into deeper or lighter engagement in different life stages and interests. We also see that as we get into more deep engagement, the number of people that participate drop (this is part of participation inequality).

For specific participants, we need to remember that citizen science projects are trying to achieve multiple goals – from increasing awareness to having fun, to getting good scientific data [Slide 19] – and this complicates what we are assessing in each project and the ability to have generic indicators that are true to all projects. There are also multiple learning that participants can gain from citizen science [Slide 20], including personal development, and also attraction and rejection factors that influence engagement and enquiry [Slide 21]. This can also be demonstrated in a personal journey – in this example Alice Sheppard’s journey from someone with interest in science to a citizen science researcher [Slide 22].

However, we should not look only at the individual participant, but also at the communal level. An example for that is provided by the noise monitoring app in the EveryAware project [Slide 23] (importantly, EveryAware was part of Future Emerging Technologies – part of the top excellence programme of EU funding). The application was used by communities around Heathrow to signal their experience and to influence future developments [Slide 24]. Another example of communal level impact is in Putney, where the work with Mapping for Change led to change in the type of buses in the area [Slide 25].

In summary [Slide 26], we need to pay attention to the multiplicity of goals, objectives, and outcomes from citizen science activities. We also need to be realistic – not everyone will become an expert, and we shouldn’t expect mass transformation. At the same time, we shouldn’t expect it not to happen and give up. It won’t happen without funding (including to participants and people who are dedicating significant time).

Institutional aspects

The linkage of citizen science to other aspects of open science come through DITOs bus in Birmingham participants’ right to see the outcome of work that they have volunteered to contribute to [Slide 28]. Participants are often highly educated, and can also access open data and analyse it. They are motivated by contribution to science, so a commitment to open access publication is necessary. This and other aspects of open science and citizen science are covered in the DITOs policy brief [Slide 29]. A very important recommendation from the brief is that recognition that “Targeted actions are required. Existing systems (funding, rewards, impact assessment and evaluation) need to be assessed and adapted to become fit for Citizen Science and Open Science.”

We should also pay attention to recommendations such as those from the League of European Research Universities (LERU) report from 2016 [Slide 30]. In particular, there are recommendations to universities (such as setting a single contact point) and to funders (such as setting criteria to evaluate citizen science properly). There are various mechanisms to allow universities to provide an entry point to communities that need support. Such a mechanism is called “science shop” and provide a place where people can approach the university with an issue that concerns them and identify researchers that can work with them. Science shops require coordination and funding to the students who are doing their internships with community groups. Science shops and centres for citizen science are a critical part of opening up universities and making them more accessible [Slide 31].

Universities can also contribute to open science, open access, and citizen science through learning – such as, with a MOOC that designed to train researchers in the area of citizen science and crowdsourcing that we run at UCL [Slide 32].

In summary, we can see that citizen science is an area that is expanding rapidly. It got multifaceted aspects for researchers, participants and institutions, and care should be taken when considering how to evaluate them and how to provide indicators about them – mix methods are needed to evaluate & monitor them.

There are significant challenges of recognition: as valid excellent research, to have a sustainable institutional support, and the most critical indicator – funding. The current models in which they are hardly being funded (<1% in NERC, for example) show that funders still have a journey between what they are stating and what they are doing.


Reflection on the discussion: from attending the workshop and hearing about open access, open data, and citizen science, I left the discussion realising that the “societal engagement” is a very challenging aspect of the open science agenda – and citizen science practitioners should be aware of that. My impression is that with open access, as long as the payment is covered (by funder or the institution), and as long as the outlet is perceived as high quality, scientists will be happy to do so. The same can be said about open data – as long as funders are willing to cover the costs and providing mechanisms and support for skills, for example through libraries then we can potentially have progress there, too (although over protection over data by individual scientists and groups is an issue).

However, citizen science is opening up challenges and fears about expertise, and perceptions about it risking current practices, societal status, etc. Especially when considering the very hierarchical nature of scientific work – at the very local level through different academic job ranking, and within a discipline with specific big names setting the agenda in a specific field. These cultural aspects are more challenging.

In addition, there seem to be a misunderstanding of what citizen science is and mixing it with more traditional public engagement, plus some views that it can do fine by being integrated into existing research programmes. I would not expect to see major change without providing a clear signal through significant funding over a period of time that will indicate to scientists that the only way to unlock such funding is through societal engagement. This is not exactly a “moonshot” type funding – pursue any science that you want but open it. This might lead to the necessary cultural change.

Advertisements

From environmental management to organisational strategy development: Using Drivers-Pressure-State-Impact-Response with ECSA

This week, together with Margaret Gold, I facilitated a strategy meeting of the European Citizen Science Association.31520287784_20489a734e At the moment, because a recent lecture in the Introduction to Citizen Science and Scientific Crowdsourcing course that was dedicated to environmental citizen science, the “Driving forces-Pressures-State-Impacts -Responses” (DPSIR) is in the front of my mind. In addition, next week I’ll participate in a workshop about Long-Term Socio-Ecological Research (LTSER) where I would discuss citizen science in another context where DPSIR is a common framework.

However, if you are not familiar with large-scale environmental management, where it is widely used since the mid-1990s,  you’re not expected to know about it. It got its critics, but continue to be considered as an important policy tool. DPSIR start by thinking about driving forces – trends or mega-trends that are influencing the ecosystem that you’re looking at. The drivers lead to specific pressures, for example, pollution or habitat fragmentation. To understand the pressures, we need to monitor and understand the state of the system – this is lots of time where citizen science and sensing data are used. Next, we can understand the potential impacts and then think of policy responses. So far, hopefully clear? You can read more about DPSIR here.

I haven’t come across the use of DPSIR outside the environmental area (but maybe there is?). However, as I was thinking about it, as we prepared for the meeting, I suggested that we give it a go as a way to consider strategic actions and work for ECSA. It turns out that DPSIR is a very good tool for organisational development! It allowed us to have a 20 minutes session in which we could think about external trends, and then translate them into a concrete action. Here is an example (made up, of course, I can’t disclose details from a facilitated meeting…). I’m marking positive things, from the point of view of the organisation, as (+) and negative as (-).

Let’s think of a citizen science coordination society (CitScCoSo). in terms of drivers, an example will be “increase recognition of citizen science”, as Google Trends chart shows. Next, there are the pressures which include (-) the growth in other organisations that are dedicated to citizen science and compete with CitScCoSo, which mean that it will need to work harder to maintain its position, (+) increase in requests to participate in activities, projects, meetings, talks etc which will create opportunity to raise profile and recognition. CitScCoSo current state can be that the organisation is funded for 5 more years and have a little spare capacity for other activities. The impacts can be (+) more opportunities for research funding and collaborations or, (-) demand for more office space for CitScCoSo (-) lack of IT infrastructure for internal organisational processes. Finally, all this analysis can help CitScCoSo in response – securing funding for more employees or a plan for growth.

When you do that on a flipchart with 5 columns for the DPSIR element, it becomes a rapid and creative process for people to work through.

As I pointed, a short exercise with ECSA board showed that this can work, and I hope that the outcomes are helpful to the organisation. I will be interested to hear if anyone else know of alternative applications of DPSIR…

 

New PhD Opportunity: Human Computer Interaction and Spatial Data Quality for Online Civic Engagement

We have a new scholarship opening at the Extreme Citizen Science group for a PhD student who will research in Human Computer Interaction and Spatial Data Quality for Online Civic Engagement. The studentship is linked and contextualised by the European Union H2020 funded project, WeGovNow! . This project will focus on the use of digital technologies for effectively supporting civic society, whereby citizens are partners as opposed to customers in the delivery of public services. By integrating a set of innovative technologies from different European partners in Germany, Italy, and Greece to create citizen engagement platform, the project explores the use of digital tools for citizen reporting, e-participation, and communication between the citizen and local government. Building on previous research and technology development, the project will include programme of innovation in technology and services delivery. More information on the UCL ExCiteS blog

Source: New PhD Opportunity

New Citizen Science for air quality campaign

Mapping for Change, the social enterprise that I co-founded, has been assisting community groups to run air quality studies for the past 5 years. During this period we have worked in 30 communities across London, carrying out studies with different tools – from collecting leaves, to examining lichens, to using diffusion tubes. We have also followed the development of low-costs sensors – for example, through participation in the AirProbe challenge EveryAware project or hosting a discussion about the early stages of the Air Quality Egg.

We found out that of the simple tools that are available to anyone, and that require little training, NO2 diffusion tubes are very effective. We’ve seen them used as a good sign of the level of pollution, especially from traffic. They sense pollution from diesel vehicles.

We also found that reliable equipment that can measure particulate matter known as PM2.5 (very small dust considered harmful) and other pollutants is expensive – as high as £5000 and more. Unfortunately, low-cost equipment cannot give accurate information that can be used in making a case for action.

Now, after developing the methodology for working with different groups and supporting local efforts, we are launching a crowdfunding campaign to support a large scale data collection campaign using diffusion tubes, with an aim to go beyond and create an equipment library that can be used by communities – free of charge apart from disposable parts (filters) and delivery – that can be shared across London and beyond.

With a community investment of £250 we will deliver 10 diffusion tubes and support the creation of a local NO2 map. There are other levels of support to the campaign – including sponsoring a specific piece of equipment.

Use this opportunity and organise a local air quality map for your area! 

Environmental information: between scarcity/abundance and emotions/rationality

The Eye on Earth Summit, which was held in Abu Dhabi last week, allowed me to immerse myself in the topics that I’ve been researching for a long time: geographic information, public access to environmental information, participation, citizen science, and the role of all these in policy making. My notes (day 1 morning, day 1 afternoon, day 2 morning, day 2 afternoon, day 3 morning & day 3 afternoon) provide the background for this post, as well as the blog posts from Elisabeth Tyson (day 1, day 2) and the IISD reports and bulletins from the summit. The first Eye on Earth Summit provided me with plenty to think about, so I thought that it is worth reflecting on my ‘Take home’ messages.

What follows are my personal reflections from the summit and the themes that I feel are emerging in the area of environmental information today. 

wpid-wp-1444166132788.jpgWhen considering the recent ratification of the Sustainable Development Goals or SDGs by the UN Assembly, it is not surprising that they loomed large over the summit – as drivers for environmental information demand for the next 15 years, as focal points for the effort of coordination of information collection and dissemination, but also as an opportunity to make new links between environment and health, or promoting environmental democracy (access to information, participation in decision making, and access to justice). It seems that the SDGs are very much in the front of the mind of the international organisations who are part of the Eye on Earth alliance, although other organisations, companies and researchers who are coming with more technical focus (e.g. Big Data or Remote Sensing) are less aware of them – at least in terms of referring to them in their presentations during the summit.

Beyond the SDGs, two overarching tensions emerged throughout the presentations and discussions – and both are challenging. They are the tensions between abundance and scarcity, and between emotions and rationality. Let’s look at them in turn.

Abundance and scarcity came up again and agin. On the data side, the themes of ‘data revolution’, more satellite information, crowdsourcing from many thousands of weather observers and the creation of more sources of information (e.g. Environmental Democracy Index) are all examples for abundance in the amount of available data and information. At the same time, this was contrasted with the scarcity in the real world (e.g species extinction, health of mangroves), scarcity of actionable knowledge, and scarcity with ecologists with computing skills. Some speakers oscillated between these two ends within few slides or even in the same one. There wasn’t an easy resolution for this tension, and both ends were presented as challenges.

wpid-wp-1444327727288.jpg

With emotions and scientific rationality, the story was different. Here the conference was packed with examples that we’re (finally!) moving away from a simplistic ‘information deficit model‘ that emphasise scientific rationality as the main way to lead a change in policy or public understanding of environmental change. Throughout the summit presenters emphasised the role of mass media communication, art (including live painting development through the summit by GRID-Arendal team), music, visualisation, and story telling as vital ingredients that make information and knowledge relevant and actionable. Instead of a ‘Two Cultures’ position, Eye on Earth offered a much more harmonious and collaborative linkage between these two ways of thinking and feeling.

Next, and linked to the issue of abundance and scarcity are costs and funding. Many talks demonstrated the value of open data and the need to provide open, free and accessible information if we want to see environmental information used effectively. Moreover, providing the information with the ability of analyse or visualise it over the web was offered as a way to make it more powerful. However, the systems are costly, and although the assessment of the IUCN demonstrated that the investment in environmental datasets is modest compared to other sources (and the same is true for citizen science), there are no sustainable, consistent and appropriate funding mechanisms, yet. Funding infrastructure or networking activities is also challenging, as funders accept the value, but are not willing to fund them in a sustainable way. More generally, there is an issue about the need to fund ecological and environmental studies – it seem that while ‘established science’ is busy with ‘Big Science’ – satellites, Big Data, complex computer modelling – the work of studying ecosystems in an holistic way is left to small group of dedicated researchers and to volunteers. The urgency ad speed of environmental change demand better funding for these areas and activities.

This lead us to the issue of Citizen Science, for which the good news are that it was mentioned throughout the summit, gaining more prominence than 4 years ago in the first summit (were it also received attention). In all plenary sessions, citizen science or corwdsourced geographic information were mentioned at least once, and frequently by several speakers. Example include Hermes project for recording ocean temperatures, Airscapes Singapore for urban air quality monitoring, the Weather Underground of sharing weather information, Humanitarian OpenStreetMap Team work in Malawi, Kathmandu Living Lab response to the earthquake in Nepal, Arab Youth Climate Movement in Bahrain use of iNaturalist to record ecological observations, Jacky Judas work with volunteers to monitor dragonflies in Wadi Wurayah National Park  – and many more. Also the summit outcomes document is clear:  “The Summit highlighted the role of citizen science groups in supporting governments to fill data gaps, particularly across the environmental and social dimensions of sustainable development. Citizen Science was a major focus area within the Summit agenda and there was general consensus that reporting against SDGs must include citizen science data. To this end, a global coalition of citizen science groups will be established by the relevant actors and the Eye on Earth Alliance will continue to engage citizen science groups so that new data can be generated in areas where gaps are evident. The importance of citizen engagement in decision-making processes was also highlighted. ”

However, there was ambivalence about it – should it be seen as an instrument, a tool to produce environmental information or as a mean to get wider awareness and engagement by informed citizens? How best to achieve the multiple goals of citizen science: raising awareness, educating, providing skills well beyond the specific topic of the project, and democratising decision making and participation? It seem to still be the case that the integration of citizen science into day to day operations is challenging for many of the international organisations that are involved in the Eye on Earth alliance.

Another area of challenging interactions emerged from the need for wide partnerships between governments, international organisations, Non-Governmental Organisations (NGOs), companies, start-ups, and even ad-hoc crowds that respond to a specific event or an issue which are afforded by digital and social network. There are very different speeds in implementation and delivery between these bodies, and in some cases there are chasms that need to be explored – for example, an undercurrent from some technology startups is that governments are irrelevant and in some forms of thinking that ‘to move fast and break things’ – including existing social contracts and practices – is OK. It was somewhat surprising to hear speakers praising Uber or AirBnB, especially when they came from people who familiar with the need for careful negotiations that take into account wider goals and objectives. I can see the wish to move things faster – but to what risks to we bring by breaking things?

With the discussions about Rio Principle 10 and the new developments in Latin America, the Environmental Democracy Index, and the rest, I became more convinced, as I’ve noted in 2011, that we need to start thinking about adding another right to the three that are included in it (access to environmental information, participation in decision-making, and access to justice), and develop a right to produce environmental information that will be taken seriously by the authorities – in other words, a right for citizen science. I was somewhat surprised by the responses when I raised this point during the discussion on Principle 10.

Final panel (source: IISD)

Finally, Eye on Earth was inclusive and collaborative, and it was a pleasure to see how open people were to discuss issues and explore new connections, points of view or new ways of thinking about issues. A special point that raised several positive responses was the gender representation in such high level international conference with a fairly technical focus (see the image of the closing panel). The composition of the speakers in the summit, and the fact that it was possible to have such level of women representation was fantastic to experience (making one of the male-only panels on the last day odd!). It is also an important lesson for many academic conferences – if Eye on Earth can, I cannot see a reason why it is not possible elsewhere.

NightScience 2015 – CRI Paris

NighStcience 2015 in CRI-Paris, 10-11 July –  Night Science is a mode of exploratory, innovative science, and as in previous years, it is an event that mixes talks with active hands-on experience. The event this year was marked by linking open innovation, social responsibility and entrepreneurship to science. The event was opened by as Francois Taddei highlighting the important of open ecology for sharing knowledge and solutions for problems that we face today. He also set the theme of the day by pointing to the need to link open science and social entrepreneurial ideas together.

The first session explored frugal research and responsible innovations

Melanie Marcel – SoScience – linking responsible research and innovation for social entrepreneurs. She provided an example of two social entrepreneurs from Burkina Faso who want to deal with malaria by developing a soap that include mosquito repellent to allow use without changing behaviour, but they had problems in making the ingredient in the soap stable, so through SoScience, they are linked to a laboratory who research how to make it happen. SoScience seeing themselves as part of responsible research and innovation, and have links with universities, and with companies (such as GE Healthcare). There is a chance to change the system in terms of relationship between society and science – who is it done for, and what problems are addressed. She also emphasised the examples of frugal innovations and science as part of the way to solve the challenges that she is dealing with it.

Marc Chooljian – Tekla Labs – volunteer organisation, run by PhD students in UCB UCSF. They are creating a network of building or using scientific equipment to allow more people to be involved in science. The access to the devices themselves is a major obstacles, and some scientific instruments can be made much cheaper than they are now. He noted that everybody should be a maker – building something help to understand the process, and how things work. But there are obstacles that they need to know – technical, safety, so there is a need for detailed information from other people who are familiar with the equipment. Tekla Labs trying to provide information that can be used within scientific processes. Unlike general DIY, there is a need to set standards of posting information to make scientific tools valid and suitable for producing results that will be accepted in publications. The process is to assess needs for some tools, then gather ideas (e.g. “build my lab” contest on Instructable), then test and edit, and provide designs to users. Design includes a lot of engineering experience, but once someone tried to build an equipment, they can share information back to those who are designing so they can change and update the design. A survey that was carried out in Argentina/Peru – there are many scientists who are willing to create their own equipment if the information is given. An example of contest included different pieces of equipment in instructable. Testing the devices and seeing how they are being used as to close the loop is currently a challenge. Need to happen by users who are not the developers.

David Ott – Red Labs: humanitarian Fab Labs by the International Committee of the Red Cross (ICRC). One of the oldest humanitarian organisations, focusing on victims of armed conflicts. The ICRC was inspired by the Fab Labs from MIT, taking the ability of maker/DIY culture in humanitarian action, seeing it as support operations and empower beneficiaries, allowing the ICRC work with the crowd to solve problems that they encounter. There are challenges in how to transport such a lab or use existing equipment in the place, securing the lab (ICRC suffered from looting of their stores in the past). Potential use is for prosthetics although making it work can be challenging in terms of specifications. There are stringent requirements on medical devices in terms of quality and certifications. Another issue is scaling up in terms of speed and quantity – what happen if you need thousands of objects?  He suggested an ‘ideal humanitarian thing’ with the following qualities: Do no harm, functional, parametric (you can change it easily in size and other properties easily to change design), editable, scalable, tool independent, material independent. They are looking for more use cases, and start with a ‘mini Red Lab Kit’ and then consider collaborations with national RCs.

The second session focused on the pursuit of Open Science

Michaël Bon covered the ‘Self Journal of Science‘. Scientists are forced to publish in ‘impact factor’ journals – there is a need to free ourselves from this tyranny. Science is defined as unambiguous, transparent, falsifiable, need to be based of well-defined statements that are then tested in experiment, but all this need to lead to a publication that is therefore central to the process. The idea of the Self-Journal of Science is to try and create a repository of scientific information that allow people to collaborate. People put their papers, and each user can vote on the paper and its significant. There is also potential to make comments on specific parts of the articles and have a debate and discussion about the different parts of the paper. The interface will change the nature of the article, the people who comment have the same authority/importance as the article itself. The aim is to create a new logic of scientific process of sharing information and knowledge.

Samir Brahmachari (CSIR-OSDD) described his experience in Open Source Drug Discovery – for 50 years TB drug discovery was neglected, and there is a very small effort through bodies like the Gates foundation to create new drugs. When you don’t have resources you are focusing on frugal innovations and that was what he focused on. OSDD is crowdsourcing with a difference – started in 2007, collaboratively aggregate the available information (biological and genetic) on TB with the aim to create a computer model that will allow drug discovery. An attempt to follow the model of aircraft design in which the model allows a lot of experimentations in the computer and then to go to production only with the most promising drugs. To make a community, they created training, open web 2.0 platform, and communication. The platform doesn’t allow people to know the position in society (teacher/students) so all ideas are taken seriously. They put effort into making functional self-organising groups (manual created by students). Thousands of papers were read by students and used to annotate genes. When the most active students received computers as a prize, the advertisement on the back of the laptop brought more volunteers when they went to college. Infosys supported a full open source stack. People that contributed more than 1% became authors (45). OSDD education value was that some continue to a PhD. Within the participants on 5% had PhD, and many people came from less endowed institutions.

Denisa Kera talks about “Subalterns” laboratories – she looks at DIYbio in Singapore – her interest is from philosophy and designer, from an STS perspective. Science can be done differently in places like Indonesia, potentially creating new forms of laboratories that are looking somewhere between kitchen, lab, party, gallery and workshops and were all sort of stuff happening. People hacking coconuts,  with participants that from Indonesia, Taiwan, ex-Yugoslavia, Nepal, Singapore, Switzerland, Japan and other places. Such labs are happening at the edge of the system – Georgia, Indonesia, Thailand etc. There is ‘epistemic violence’ in R&D – it is transferred & applied in the South, adopted by the public by forcing it to society. It heavily dependent of material donation or through Corporate Social Responsibility to make it happen. There are also issues with researchers from the North interpreting ‘Local Needs’ and finding solutions. Instead we can think of open science, open access and open hardware. Open can also mean ‘post-colonial’ science. She also look at how open hardware travel between North and South, how it is used after the first build, as objects have longer life.

Jason Bland covered the Citizen Cyberlab activity SynBio4All. It aims to open the world of synthetic biology to the public and allow people to learn, support and study. They aim to create a SynBio community, started by design a community platform that will support learning and engagement. SynBio takes an engineering approach to DNA manipulations. SynBio has many applications – drug production, food, material and fuel, and potential synthetic organisms. He used an example of the project ‘The Smell of Us‘ which was part of iGEM competition. This year there is also development of a MOOC, for high school students, about SynBio.

Joel Chevier – a lab in your pocket. He thinks of the smartphone as a lab tool, to play with children. Smartphone is a great pocket lab. If you look at the smartphone and what is does in daily life make it very accessible – you want real-time, interactive, fit everybody perception, networked and sharing information. Will play science with it, and the game is to see the world around you, and see what is happening around you and also other people. Game such as draw a large circle on the floor, and see the blue point on the screen – the person outside look at what people do and see how the point is moving in space. He created a website for these activities.  Possible to also consider more sensors – e.g. thermodynamics through pressure & temperature.

The third session looked at the combination – frugal and digital education 

Guy Etienne discuss the activities in Haiti, how it is used for community development and learners empowerment. He noted that the world is fast-moving, and is very complicated. We need to adapt our strategy to different places. Society too often penalize young brains in terms of disadvantaged groups in society by depriving them of opportunities. Everything that student learn need to think how they use it to change their community for the better. The goals: critical thinking, rational judgement, strength of character, empathy (very important between religious groups and other divisions in society), operational leadership and change-maker skills. There are big political and economic risks – so need to have support of parents, community, government and students. The government resist change, but because the school is funded through tuition fees from the students, it allow the school to become a social enterprise, and to aim to generate funds to modernised the space, and use non-traditional sources (soap / acid from batteries for chemistry) to deliver education. The school is using sensing as part of direct engagement with science – using weather stations, seismographic stations to educate the students about the measurements that are direct to them. Instead of final exam in science, they are running a science fair that is aimed at teaching science for change-makers citizens, which mean demonstrating how science is relevant for their community. The school now have a robotics laboratory – so every student in the school will have to learn what they are and how to create them. In science fairs, they have 4000-5000 visitors. They aim to change the teachers of the future – change the mentality of students, attitude and abilities.

Ange Ansour – see teachers as constant tinkerers. The programme of the CRI that emphasise learning through research.

Celine Nartineau and Vanessa Mignan explored e-Fabrik, focusing on digital problem-solving initiative for youngsters and disabled people (I’ve seen that in ECSITE 2015). Linking young people from disadvantaged communities with disabled people in a fab lab, to consider solutions together. The lessons: working outside the comfort zone is rewarding.

Barbara Schack – access to education and culture with mobile media centre. Setting a media centre in Haiti after the earthquake helps in strengthening communities. Refugees spend on average 17 years in refugee camps and there are 50 million people in such status, so we need a new staple for these people – as part of humanitarian support we need to think of reading. Learning and access to information, playing. They work with UNHCR – they create with Philippe Stark an idea box that unfold to everything that you need to learn, play and create (video below, and the website is ideas-box.org)  They would like to work more places, and a priority is to support refugees from Syria and Iraq in Jordan and Lebanon.

Yogesh Kulkarni, (Vigyan Ashram – a center of Indian Institute Of Education (IIE) Pune). – talks about energetic schoolchildren in India. Need to teach students to identify development need of the community. Example is lack of social space in a village, and through participatory design and building the garden was built. It was design with Google Sketchup plan and use a lot of recycled materials. The students learn through ‘Socrates method of questioning’ after every task and linking that to the curriculum area. Questions on food, energy, engineering. Fab Lab provide the space to mix traditional tools and skills (e.g. carpentry) with recent tools (3D printer, Google Sketchup)

The fourth session was Innovation, Agoras and Citizen Empowerment

Cindy Regalado (ExCiteS, Citizens Without Borders) – describing the development of Barney, a kite that was developed in the Public Lab Barn Raising. DIY for her is about ‘for whom, by whom and for what?’ DIY is about critical making – the possibility to intervene substantively in systems of authority and power, and reflecting on infrastructure, institutions, and communities. She emphasised the importance of communicative spaces – they are allowing people to create a social process and the meaning of something can be only understood when it is used. creating communicative spaces is challenging. We need to consider to what lead people to frugality and need – not to assume that it’s all positive. Also need to consider privilege, acknowledge the technology hype and consider the true potential. She used examples from Public Lab to demonstrate her concepts. The DIY itself will not solve problems, but only expose the systemic and structural issues with society?

James Carlson talks about the ‘Bucket-works’ in Milwaukee (the School Factory) – they now have 100s of members, 90 start-ups, and 2 weddings from their original organisation! He see 8 varieties of collaborative spaces – hackerspace, makerspace, co-working incubator, arts collab, project collab, open democracy areas, citizen science and open health space, and community kitchen and open food. These types have things in common – models of resources and business. They become active through community interaction. All these are having bias towards lots white men, they are not linked to communities nearby them, individual transformation focus, trends to wards engineering science skill-sets not social, emphatic skills. The door is the most important technology, and need to convince people to join in and to go through the door. Need to help people to go through transition, learning how to participate in the context of collaboration, practice experimentation and failure and learning how to self-direct learning – and even the social interaction. How do we map the learning process for participants? How to we help to bring it to small places. There is too much economic focus in terms of driving, and need to have a more emphatic approach that highlights society. James’ presentation is available here.

Amber Griffiths (Foam) – Connecting Society with Science. Everyone funds science through their taxes, and science is better when more people contribute, there is an overwhelming lack of scientific literacy (from minorities -> to the educated pale/male/stale politicians), and science matters to people’ life. Within this context, scientists have love-hate relationships with citizen science. Examples from exploring frog disease, or mapping magpies which follows just the patterns of population. Can we move beyond the unidirectional model of citizen science and encourage people to develop their own ideas? There are ways to help – physical space to do the work, nudge to start and support, and access to existing knowledge. The London Biohackspace is an example for a community space and there are also Foam lab in Cornwell where people can create open spaces. One problem with physical spaces is that they are intimidating – male, already established social relationship, but they can be more collaborative. Access to existing knowledge is increasing with open access, that you still need to know that it exists, where to find it, and how to judge it.

Eleanor Rusack describes UNITAR GeoTag-X. GeoTag-X allow to harvest media (photos/video/audio) about disaster and then analyse media collaboratively and then share it. The process is all with volunteers, and identifying experts volunteers. Photos that are collected are set into categories and are then classified. They also provide outputs that can be used by the Humanitarian Data Exchange.

Nicoals Huchet talked about ‘bionicoHand – a prosthetic arm created in a Fab Lab.  Started in 2002 when he lost his hand and started using prosthetic hand. The personal interest and exposure to fab labs he started developing a new type of prosthetic hand based on Arduino. He feel much more confidence with disability, and not about creating a business or making it cheep. In 2014 started sharing the information on websites and it started to be replicated. MHK – My Human Kit is based on technology and open source, social and educational involvement, social entrepreneurship,  linking disability and art and also contribute to humanitarian goals. He is working with INSA, fab labs and companies – working with geeks, disabled people and medical professionals.

Jaykumar Menon (McGill) closed with discussion on open innovation, humanitarian issues and human rights. He started with the Pasteur Quadrant set the basic research and applied research – according to human needs and interest. He had experience in the area of human rights and moved to the innovation world – and working to develop a network called Zakti, which is an innovation think-tank. He is interested to look at planetary scale issues and think of how to address them. The methods are suitable for open innovations: prizes, crowdsourcing, open innovation and complex collaboration. Used example of iron which is the biggest deficiency and impact 3 billion people – thinking about mixing it in salt as a way to double fortified salt (in addition to iodine). There are also issues with pharma, with a broken system in terms of R&D, development and production that OSDD demonstrate new ways of solving, so there are new ways of solving problems.

Final thoughts: As in the previous events, NightScience is a great event to hear about fascinating achievements and ideas from across the world that bring together science, society, innovations, education and technologies in a very helpful way. You leave such event with the spirit lifted.

Yet, a thought that was running in my head is that many of the issues are partially coming from desperation with the current systems in the world – inequalities, market fundamentalism, cutting public spending and expectations that individuals and groups in society will fend for themselves or else they are left without help. The solutions are mostly tinkering with the existing system and are very gentle in exposing its failures or trying to cause proper disruption that can change the state of things. My work included in this same critique.

Mapping for Change community-led air quality studies

As part of the citizens observatories conference, I represented Mapping for Change, providing an overview of community-led air quality studies that we have run over the past 4 years. Interestingly, as we started the work in collaboration with London Sustainability Exchange, and with help from the Open Air Laboratories programme the work can be contextualised within the wider context of NGOs work on citizen science, which was a topic that was covered in the conference.

The talk covered the different techniques that were used: eco-badges for Ozone testing, Wipe sampling, Diffusion tubes and particulate matter monitoring devices. In the first study, we also were assisted by Barbara Maher team who explore tree leaves for biomonitoring. The diffusion tubes are of particular importance, as the change in deployment and visualisation created a new way for communities to understand air quality issues in their area.

The use of a dense network of diffusion tubes became common in other communities over the past 4 years. I also cover the engagement of local authorities, with a year-long study in the Barbican with support from the City of London. There is a lesson about the diffusion of methodologies and approaches among community groups – with the example of the No to Silvertown Tunnel group carrying out a diffusion tubes study without linkage to Mapping for Change or London Sustainability Exchange. Overall, this diffusion mean that over 20 localised studies are emerging across London.