Citizen Science Inquiry event and book launch at the Open University

Citizen Inquiry is a new book, edited by Christothea (Thea) Herodotou,‎ Mike Sharples,  and Eileen Scanlon – all are education technology experts at the Open University. To celebrate the book, the Institute of Education Technology organised a citizen science impact symposium.  These are my notes from the day.

The day opened with Eileen Scanlon covered Citizen Science at the Open University. Eileen provided context about the role of the Open University in providing an alternative way of learning science. Concepts about teaching science and how to understand the experience of the learner. There is a series of innovating pedagogy reports – the 2017 report will come out soon. Eileen examined how the introduction of technology change science learning and teaching. Technology should be understood more widely: development of experimental kits that were created to allow students to explore science at home, with thousands of students joining in the 1970s. The OU has used television as a way of linking learning to the courses that they lead, and today they link to other popular programmes, with a lot of interactions on the web and using online technology. They’ve done the SO2 pollution national experiment from 1971-1979 with acknowledgement to the contribution of the volunteers in a paper by Rose and Peare 1972 (p378). The work involves teaching science in a social experiment and carried out with first-year students. Further work was carried out by Peggy Varley – drosophila that were captured in matchboxes with insects. Later versions of the introductory course included moths traps. The aim was to engage students with science. In 2007-2009 another activity at the OU is iSpot that focused on geographical aspects of species distribution and developed by Jonathan Silvertown. The OpenScienceLab is to open science to people across the spectrum of learning. There is a journey between informal and formal learning and can travel in both directions (e.g. iSpot evolved into supporting a MOOC in ecology). There are massive challenges for new learning – informal to formal, passive to active, solitary to sharing and from learner to teachers.

I was asked to provide a keynote, and provided a talk about learning in contributory, collegial and co-created citizen science, drawing especially on the experience of the ExCiteS group.

The next presentation was by Thea Herodotou about the LEARN Citsci: a project that involved UCDavis, OU, Oxford, NHM, CalAdacmey and LA County. The project is looking at citizen science and focuses on youth participants (5-19) and the learning outcomes – what they learn through participation. There are multiple overlapping settings – how the goals help and hinder their learning. The project looks specifically at NHMs and the citsci projects that they’re doing. They look at Basu and Barton Citizen Science Agency which was adapted by Heidi Ballard. The objective of the project, in particular, the OU, trying to describe the learning settings where citizen science takes place – describe the physical or digital space where it’s happening, what are the roles of young people in projects, and also social interaction, family communication, staff, scientists etc. Looking at relevant activities – one day. They examine iNaturalist application in a bioblitz and the way it is used. They also examine Zooniverse and looking at NHM project – miniature fossils that are being used in the project. In year 1 the focus is on describing settings, and then move to capture learning, then redesign new citizen science programmes and then data analysis. The intended impacts include how to design online and offline citizen science programmes to scaffold learning and participation for young people.

The final morning talk was by Liz FitzGerald – about Situ8 – a tool to let annotate physical places with digital information, it is now a web platform. A hub for Geolocated media, originally created as a generic platform. Situ8 was with limited resources and initial prototype as a smartphone app and became a web portal. Allow people to register and by anyone. Used it in an OU field course, and in S288 module for Practical science – with measures of water quality. The platforms support data, images, text, video. They also allow exploring the data that was collected. Supports both qualitative data collection (poems or recording of information) and scientific data. They are addressing the copyright of the data and control over the downloading permissions. They use MO – Media Objects – and the platform is very generic.

Mike Sharples –  talked about nQuire – the original version, which provided a tool for schools to developed and get involved in inquiry-based learning in schools. Open learning allow for sophisticated exploration, including the virtual microscope at the OU that allows the exploration of moon rocks. The system doesn’t work due to changes in technology. The OU approach is starting from mobile and inquiry-based learning, and how to engage citizens and a wider range of participants. The successes include “citizen inquiry” as a proposal which became a reality (originally mention in an ERC synergy proposal that wasn’t successful). Citizen inquiry is becoming a framework that is recognised that combines with citizen science and inquiry-based ideas. They also developed tools – the nQuire platform, supported by Nominet Trust. The nQuire0t platform is a more open activity which includes spot-it, sense-it and win-it missions. They have 1106 users and 187 projects. The nQuire-it platform is supported by an app that unlocks the sensors on the mobile phone that the system opens to a user. Challenge – how to get to the mass scale that is beyond surveying. There are issues of recruitment, think of engagement – such as a low barrier to entry and intimidating to newcomers. The introductory screen of many websites assumes existing interest. Also how to gain value from contributing positive feedback, join a community of practice (in future learn). The next issue is sustainability – how to keep a community going: identity (we’re rock hunters/cloud spotters), development – is there a sequence of forming, storming, norming, performing relevant to cit sci, and what guidance, curation and mentoring. Finally Maturity, including considering the maturity of a community and its mitosis (breaking up to new group). Need to thing of places for people to interact with each other, support each other.

The third challenge is how to do good science with valuable outcomes that is appropriate, reliable, robust and ethical.

Good citizen inquiry need to do valuable learning, linked to teaching, have a large scale data set, good element of engagement and serendipity, involvement of trained scientists and accurate data collection and analysis.

 

Some of the book chapters:

Maria Aristeidou provided the analysis of the nQuire It platform, identifying the design requirements and then evaluated the implementation. Participants self reporting didn’t report on the inquiry process and suggested recommendation and guidelines

Gill Clough talked about geocaching about the use of geocaching then and now – she done a study in 2007. She done a detailed mixed survey of closed and open questions, and she discovered a lot of learning – 84% learn something online. Geocaching have become a subscription app, not expensive, and the commercialisation led to debate in the community. GPS is also available on the phone, and it is relying on them.

Stuart Dunn and Mark Hedges look at citizen humanities and transmission of knowledge. Looked at crowdsourcing in humanities projects  http://www.ahrc.ac.uk/documents/project-reports-and-reviews/connected-communities/crowd-sourcing-in-the-humanities/ notice different types of projects that are close to the classical crowdsourcing. Crowd gets methodological proficiency, domain expertise about the subject – but outside universities. They also identified collective knowledge and practical skills.

 

Advertisements

Chapter in Routledge Handbook of Mapping and Cartography – VGI and Beyond: From Data to Mapping

Hot on the heels of the Routledge Handbook of Environmental Justice is thThe Routledge Handbook of Mapping and CartographyRoutledge Handbook of Mapping and Cartography. The handbook was edited by Alex Kent (Canterbury Christ Church University) who is currently the President of the British Cartographic Society and Editor of The Cartographic Journal; and Peter Vujakovic (also from Canterbury Christ Church University) who edited The Cartographic Journal.

Like the other handbooks, this is an extensive collection of 43 chapters and almost 600 page about maps and mapping. The chapters provide a vivid demonstration that cartography and map making is art and science, and that it links to many sciences and practices – from cognitive psychology to geodesy. The list of authors is impressive and includes many of the people that are shaping current cartographic research.

However, with a price tag of £195 for the Book, this collection is expensive and suitable for university libraries and to professional or commercial mapping organisation. The eBook is £35, which makes it much more affordable, though having used the online system, the interface could be better. Luckily the policy of Routledge permits sharing the chapters on personal websites.

My contribution to the book is in a joint paper that was led by Vyron Antoniou titled VGI and Beyond: From Data to Mapping. The chapter is building on a collaboration between Vyron, myself and Cristina Capineri during the COST Action on Volunteered Geographic Information (ENERGIC). In the chapter, we look at the concept of Volunteered Geographic Information (VGI) within practices of mapping and cartography and we attempted to provide an accessible overview of the area. We define what VGI is, provide an overview of the area, look at the advantages and disadvantages of VGI in mapping and cartography, and then look at the impacts of VGI on national mapping agencies, the public, and public bodies. The chapter is available here and we would be very happy to hear comments on it.

 

 

Caren Cooper’s Citizen Science: How Ordinary People are Changing the Face of Discovery

Today, Caren Cooper new book Citizen Science: How Ordinary People are Changing the Face of Discovery is going on sale in the UK. The book has been out in the USA for about a year, and it is a good point to review it.

The library of citizen science books is growing – there are the more literary books such as a diary of a citizen scientist, or citizen scientist, and a growing set of books that are edited collections such as Dickinson and Bonney Citizen Science: Public Participation in Environmental Research or the accessible The Rightful Place of Science: citizen science

Caren Cooper book is adding to this collection something important – a popular science book that provides an overview of the field, phenomena, and the movement of citizen science. As I was reading the book, I recognised the major challenge that she faced. Introducing citizen science is a complex issue: it happens in many areas of science that don’t always relate to each other, it got different structures and relationships between the scientists and the participants, and it can be close and personal, or remote and involving many thousands of people in online activities. In addition to this, citizen science can lead to many outcomes: improving education, contributing to a scientific project, self-empowerment and learning, addressing a local environmental problem and community cohesion, to name but a few. Packing it all into an accessible and engaging book is quite a feat.

Cooper has the experience in communicating citizen science through various blog posts that she published over the past 5 years and some of them have set the ground for this excellent book. The way she balanced the different aspects of citizen science is by taking different scientific fields as the main classification for the chapters, with 10 chapters covering different areas where citizen science have been used – from meteorology to public health. Each chapter provides both the factual information about the type of citizen science that is being used in it, as well as engaging stories and descriptions of the participants in them so we have a real and concrete image of how citizen science is being practiced.

Through the chapters, the reader is becoming familiar with the different modes and mechanisms that are being used in citizen science. For example, she uses the Brony@home project as a way to introduce volunteer computing and showing how the interactions around it can be meaningful and engaging, thus not marginalising this form of citizen science. Another example is the discussions in a later chapter on the use of Patients Like Me as a platform for citizen science, and the way that some of its experiment are challenging common medical practices in the ALS study on the impact of lithium.

One fantastic aspect of the book is the way that it respects and values all the forms of citizen science and the participants, and provide the reader with an opportunity to understand that it can come in many shapes, and she describes the difficulties and triumphs that came out from different studies, different forms of engagement, and different disciplines. She is providing a clear thread to link all these cases through the progression that she makes throughout the book from scientist-led projects (opening with Whewell tide study) and moving towards community-led studies towards the end, with examples from environmental justice campaigns. All these cases are described with warmth and humour that makes the material accessible and enjoyable to read.

Throughout the book, Cooper is making it clear that she sees citizen science as a critical part of the current landscape of science and society relationship, and she addresses some of the issues that are being argued about citizen science – for example, data quality – heads on. The book is making a strong advocacy for scientists and people who are involved in science communication to use citizen science as a way to improve the linkage between society and science.

The book is focusing, mostly, on American projects, case studies and practices – including social and cultural ones, but not to a degree that it makes it difficult to a reader from outside the US to understand. Only in a handful of cases I had to check on Wikipedia what a term or a phrase mean.

Overall, the book is engaging, enjoyable and informative. If you want an up-to-date introduction to citizen science, this book will open up the field to you. If you are working in a citizen science project or involved in developing one, you will learn new things – I did! 

 

 

 

Chapter in Routledge Handbook of Environmental Justice – Participatory GIS and community-based citizen science for environmental justice action

The Routledge Handbook of Environmental Justice has been published in mid-September. This extensive book, of 670 pages is providing an extensive overview of scholarly research on environmental justice

The book was edited by three experts in the area – Ryan Holifield from the University of Wisconsin-Milwaukee, Jayajit Chakraborty from the University of Texas at El Paso, and Gordon Walker from the Lancaster Environment Centre, Lancaster University, UK. All three have affiliations that relate to Geography, and geographic and environmental information play a major part in the analysis and action regarding environmental justice.

The book holds 51 chapters that are covering the theory and practice of environmental justice – from how it is analysed and understood in different academic disciplines, to the methods that are used to demonstrate that environmental justice issues happen in a place,  and an overview of the regional and global aspects of current environmental justice struggles. The range of chapters and the knowledge of the people who write them are making this collection a useful resource for those who are studying and acting in this area (though few top authors in this field are missing, but their work is well referenced)

However, with a price tag of £165 for the Book, the costs put an obstacle for those who need the information but suitable for universities and libraries. The eBook is £35, which makes it much more affordable, though having used the online system, the interface could be better. Luckily the policy of Routledge permits sharing the chapters on personal websites.

My contribution, together with Louise Francis, is in Chapter 24 –Participatory GIS and community-based citizen science for environmental justice action. In this chapter, we provide an overview of the use of participatory GIS in environmental justice action, but in particular, a detailed explanation of the methodology that we have developed a decade ago, with contributions from Colleen Whitaker, Chris Church and other people that worked with us a the time. The methodology is now used in the activities of Mapping for Change.  The methodology supports both participatory mapping and citizen science.

As we note in the chapter “Our methodology emerged in 2007, through the London 21 Sustainability Network project ‘A Fairer, Greener London’, which aimed to give six marginalised communities the opportunity to develop their own understanding of local environmental justice issues and supporting action plans to address them. The project was integrated closely with the project ‘Mapping Change for Sustainable Communities’ which was funded as part of the UrbanBuzz scheme. Both projects were based on accessible GIS technologies and available environmental information sources.

The methodology evolved into a six-stage process that is inherently flexible and iterative – so, while the stages are presented here as a serial process, the application of the methodology for a specific case is carried out through a discussion with the local community.” The chapter provides an example for the implementation of the methodology from the work that we carried out in the Pepys Estate.

If you want to read the whole chapter (and use the methodology) you can find it here. For any other chapter in the handbook, email the authors and they will probably share a copy with you. 

Defining principles for mobile apps and platforms development in citizen science

Core concepts of apps, platforms and portals for citizen science

In December 2016, ECSA and the Natural History Museum in Berlin organised a  workshop on analysing apps, platforms, and portals for citizen science projects. Now, the report from the workshop with an addition from a second workshop that was held in April 2017 has evolved into an open peer review paper on RIO Journal.

The workshops and the paper came to life thanks to the effort of Soledad Luna and Ulrike Sturm from the Berlin Museum.

RIO is worth noticing: is “The Research Ideas and Outcomes (RIO) journal” and what it is trying to offer is a way to publish outputs of the whole research cycle – from project proposals to data, methods, workflows, software, project reports and the rest. In our case, the workshop report is now open for comments and suggestions. I’ll be interested to see if there will be any…

The abstract reads:

Mobile apps and web-based platforms are increasingly used in citizen science projects. While extensive research has been done in multiple areas of studies, from Human-Computer Interaction to public engagement in science, we are not aware of a collection of recommendations specific for citizen science that provides support and advice for planning, design and data management of mobile apps and platforms that will assist learning from best practice and successful implementations. In two workshops, citizen science practitioners with experience in mobile application and web-platform development and implementation came together to analyse, discuss and define recommendations for the initiators of technology based citizen science projects. Many of the recommendations produced during the two workshops are applicable to non-mobile citizen science project. Therefore, we propose to closely connect the results presented here with ECSA’s Ten Principles of Citizen Science.

and the paper can be accessed here. 

Chapter in ‘Understanding Spatial Media’ on VGI & Citizen Science

77906_9781473949683[1]The book ‘Understanding Spatial Media‘ came out earlier this year. The project is the result of joint effort of the editors Rob Kitchin (NUI Maynooth, Ireland), Tracey P. Lauriault (Carleton University, Canada), and Matthew W. Wilson (University of Kentucky, USA).

The book is filling the need to review and explain what happened in the part 20 years, with the increase use of digital geographic information that then became widespread and can be considered as a media – something that Daniel Sui and Mike Goodchild noted in 2001. The book chapters are covering the underlying technologies, the sources of the data and media that are part of this area, and the implications – from smart cities to surveillance and privacy.

My contribution to this book is in a chapter that belong to the middle section – spatial data and spatial media – and that provides an introduction to Volunteered Geographic Information and Citizen Science. If you’re interested, you can read the chapter here.

Changing departments – the pros and cons of being away from home discipline(s)

Last weekend, I updated my Linkedin page to indicate that I’ve now completed the move between departments at UCL – from the Department of Civil, Environmental, and Geomatic Engineering to the Department of Geography. It’s not just me – the Extreme Citizen Science group will be now based at the Department of Geography.

With this move, I’m closing a circle of 20 years – in September 1997 I came to the Department of Geography at UCL to start my PhD studies at the Centre for Advanced Spatial Analysis (At the time, CASA was an inter-departmental centre with links to the Bartlett, Geography, and Geomatic Engineering). At the end of my PhD studies, in 2001, after four years of self-funding the PhD by working as a sysadmin in Geography, research assistant in CASA, and few other things, I was looking for opportunities to stay in London for a while.

Today, the plight of EU academics in the UK due to Brexit is a regular feature in the news. In a similar way, as a non-EU person, I had to take into account that every job that I’m applying to will require organising job permit, and consider how long it will last. This ‘silent’ part of the academic experience that was there for many people is becoming common knowledge, but that’s another story…

With that in mind, I have applied to quite a diverse range of jobs – and finding myself shortlisted at urban planning at MIT, Geography at Leicester, Geography at LSE, Geography at the Hebrew University (where I’ve done my BSc and MA), and Geomatic Engineering at UCL, in addition to management consultancy, and a GIS software company. The MIT, LSE and the commercial jobs weren’t successful, and Leicester offer came too early in the write-up process. In the end, UCL Geomatic Engineering materialised at the right time and this is where I ended.

I found myself staying at the department (including its merger with Civil and Environmental Engineering) for 15 years until it became clear that it is time to move because an incompatibility between the direction that my research evolved and the focus of the department. I did consider staying within the faculty of Engineering – some of my work is linked to computer science, and to interaction with geographical technologies which is related to Human-Computer Interaction, but it felt just as incompatible – after all, most of my work is appearing in journals and conferences that are not valued by computer scientists but by geographers. It was good to discover that my interest in moving to the Department of Geography was welcomed, and now the process is complete. So what have I learned in these 15 years of being a geographer (geographical information scientist) in a civil engineering department? and what reflections do I have about being a researcher of one discipline but having an academic position in another?

Straddling fences

Let’s start from my own position – Nadine Schuurman & Mike Goodchild interview from 1998:

NS Some of the human geographers have partially built their careers upon writing critiques of GIS. How meaningful is participation in these debates for people in GIS?
MG Quite meaningful for geographers interested in GIS. If I were advising a new graduate student on how to succeed in geography these days, my advice would be to try to straddle that fence. It wouldn’t be to come down on either side of it because you have to be able to talk to the rest of the discipline and yet you have to be able to use the technology (Schuurman 1998, emphasis added)

This matched also recommendations that I received before starting my PhD, and my own interest from previous studies in linking social aspects in the environment and society interface with GIS and technology. During my PhD, I was lucky to be linked to three areas of studies at UCL – CASA, with its focus on GIS, computer modelling and visualisation, the Environment and Society Research Unit (ESRU) in Geography, and Human-Computer Interaction (HCI) and Usability Engineering expertise in the department of Computer Science. The result was that my PhD thesis had both a technical part, as well as social-theoretical part. It also demonstrated in papers that I wrote collaboratively during the PhD – for example, a technical paper about the use of agent-based modelling, was followed by a social theoretical paper about the methodological individualism that is embedded in the models at the time.

The technical part of my academic identity was part of the reason that Geomatic Engineering accepted me, and at least at the beginning I tried to fit in – e.g. by directing my attention to technical aspects of GIS data and processing representations and supervising a PhD on 3D data storage. However, participatory aspects of GIS continue to interest me – so I seized opportunities to develop this area. For example, once I heard about OpenStreetMap, I directed my research effort towards it, or when I learned about London 21 Sustainability Network effort to create a London Green Map, I offered help and designed MSc projects to support it. Since 2007, my research became more concentrated on participatory mapping and citizen science. As a result, the work that is linked to geomatic engineering (i.e. surveying, precise measurements, photogrammetry) shrank, as well as relationships with other areas of work in the department, this eventually led to where I am now.

Considering that I have found myself as an interdisciplinary researcher in a department that is completely outside either my ‘home’ disciplines (either Geography or Computer Science), had benefits and challenges.

Benefits

The most important benefit, which eventually paid off, was the disciplinary freedom. While at the point of promotion applications, or specific evaluators for a research applications and such, I did provide a list of people who relate to my area of work (Geographic Information Science), on the day to day work I was not judged by disciplinary practices. Shortly after securing the lectureship, Paul Longley introduced me to the 3Ps – Publications, Pounds (grant money), and PhD students as criteria that you should pay attention to in terms of career development. Because of my involvement with London Technology Network, I’ve learned about the fourth P – Patents (as in wider impacts). With this insight in mind, I was aware that around me, people cannot evaluate my research on its merit so they will check these general matrices, and as long as they are there, it does not necessarily matter what I do. This freedom provided the scope to develop the combination of technology development which is embedded in social science research which I enjoy doing.

Disciplines do set which journals you should publish in, what conferences you’re expected to present in, and similar aspects of an academic career. Being outside a discipline means that I could publish sometimes in computer science (my top cited paper) and sometime in geography and urban studies (my second top cited paper). Noticeably, I don’t have a single publication in a pure geomatic engineering journal. This allowed for exploring different directions of research that if I was inside a disciplinary department, I would not necessarily be able to do.

The second important benefit was to learn how to communicate with engineers and people who do not see the research from the same perspective as you. Because I was in an engineering department, I was applying to the Engineering and Physical Science Research Council (the categorisation of my research on EPSRC website are interesting – and I know that they are not what I entered to the system!) and that meant that I needed to think about the reasons that someone who reviews my applications or judges them on a panel will see the benefits from their perspective. I had to learn how to think about structuring research applications, or submissions to REF so they are convincing and relevant to the reader – there was no point in going over the philosophy of technology reasons for researching VGI because this does not help in convincing the reader that my research is worth funding. Highlighting the technical advances and the potential for wider societal impact was more important.

Third, the position that I found myself in was pushing my interdisciplinary understanding further. Not only I had to get used to the engineering mindset and support engineering education (to a very minor extent), I also was in a position that I was doing participatory action research but within an engineering department, which made it more palatable for various researchers in the natural sciences and engineering to approach me while applying for funding. They needed a “safe” person to carry out a participatory part of a wider research project, and I guess that being based in an engineering department made it look this way.  Over the years, I had discussions if the group that I led can be considered as “social scientists” on a project, because of the departmental affiliation. I found it puzzling, but I guess that for reviewers who look less at the details of each applicant’s background, and used to look at affiliations, this worked.

Downsides

The most obvious downside of being out of a disciplinary department is the issue of resources – this was frustrating while also understandable. Many requests for resources, such as appointing a lecturer in my area, were turned down. Throughout the whole period, the activities that I was carrying out were interesting, or even one that worth highlighting at a departmental level from time to time. When it came to the hard decisions on investment and resource allocation, the activities were not part of the core mission of the department and therefore not fundable. This left me with a continual need for bootstrapping and figuring out ways to secure resources.

The second downside is a version of the imposter syndrome that I started calling  “the hypocrite syndrome”. This is the downside of the communication across disciplines (and therefore epistemologies and ontologies) that I mentioned above. It is the feeling that while what drives the research is a social theory, the process of writing an application is about dampening it and emphasising technical aspects. A good example for this is in my paper about data quality of OpenStreetMap – if you read carefully the paper, it’s fairly obvious that my main reason to carry out quality assessment is so I can have a measure that will help me to show the social justice aspect of the project. Most of the papers that cite this work take it as a paper about data quality. It was a useful way of developing my research, but it doesn’t make you feel that you have provided a holistic description of what your aims are.

A third downside is the additional effort that was required to keep in touch with the development of the discussions in your home disciplines – I frequently went to geography conferences and followed the literature on HCI and computer science, but this is not a replacement for attending regular departmental seminars or even noticing discussions during departmental meetings, that keep you up to date with the general development. In Geography, I was lucky to be on the board for a leading journal (Transactions of the Institute of British Geographers) for about 5 years, and that provided another way to keep in touch and learn about the discipline.

Overall, I don’t regret the decision to go for an engineering department. The journey was interesting, I have learned a lot through it, and have developed my academic career this way. In hindsight, it did work well. What will happen next? I don’t know – I’ll probably need to reflect in 5 years what were the impacts of joining a disciplinary department…