Citizen Science Inquiry event and book launch at the Open University

Citizen Inquiry is a new book, edited by Christothea (Thea) Herodotou,‎ Mike Sharples,  and Eileen Scanlon – all are education technology experts at the Open University. To celebrate the book, the Institute of Education Technology organised a citizen science impact symposium.  These are my notes from the day.

The day opened with Eileen Scanlon covered Citizen Science at the Open University. Eileen provided context about the role of the Open University in providing an alternative way of learning science. Concepts about teaching science and how to understand the experience of the learner. There is a series of innovating pedagogy reports – the 2017 report will come out soon. Eileen examined how the introduction of technology change science learning and teaching. Technology should be understood more widely: development of experimental kits that were created to allow students to explore science at home, with thousands of students joining in the 1970s. The OU has used television as a way of linking learning to the courses that they lead, and today they link to other popular programmes, with a lot of interactions on the web and using online technology. They’ve done the SO2 pollution national experiment from 1971-1979 with acknowledgement to the contribution of the volunteers in a paper by Rose and Peare 1972 (p378). The work involves teaching science in a social experiment and carried out with first-year students. Further work was carried out by Peggy Varley – drosophila that were captured in matchboxes with insects. Later versions of the introductory course included moths traps. The aim was to engage students with science. In 2007-2009 another activity at the OU is iSpot that focused on geographical aspects of species distribution and developed by Jonathan Silvertown. The OpenScienceLab is to open science to people across the spectrum of learning. There is a journey between informal and formal learning and can travel in both directions (e.g. iSpot evolved into supporting a MOOC in ecology). There are massive challenges for new learning – informal to formal, passive to active, solitary to sharing and from learner to teachers.

I was asked to provide a keynote, and provided a talk about learning in contributory, collegial and co-created citizen science, drawing especially on the experience of the ExCiteS group.

The next presentation was by Thea Herodotou about the LEARN Citsci: a project that involved UCDavis, OU, Oxford, NHM, CalAdacmey and LA County. The project is looking at citizen science and focuses on youth participants (5-19) and the learning outcomes – what they learn through participation. There are multiple overlapping settings – how the goals help and hinder their learning. The project looks specifically at NHMs and the citsci projects that they’re doing. They look at Basu and Barton Citizen Science Agency which was adapted by Heidi Ballard. The objective of the project, in particular, the OU, trying to describe the learning settings where citizen science takes place – describe the physical or digital space where it’s happening, what are the roles of young people in projects, and also social interaction, family communication, staff, scientists etc. Looking at relevant activities – one day. They examine iNaturalist application in a bioblitz and the way it is used. They also examine Zooniverse and looking at NHM project – miniature fossils that are being used in the project. In year 1 the focus is on describing settings, and then move to capture learning, then redesign new citizen science programmes and then data analysis. The intended impacts include how to design online and offline citizen science programmes to scaffold learning and participation for young people.

The final morning talk was by Liz FitzGerald – about Situ8 – a tool to let annotate physical places with digital information, it is now a web platform. A hub for Geolocated media, originally created as a generic platform. Situ8 was with limited resources and initial prototype as a smartphone app and became a web portal. Allow people to register and by anyone. Used it in an OU field course, and in S288 module for Practical science – with measures of water quality. The platforms support data, images, text, video. They also allow exploring the data that was collected. Supports both qualitative data collection (poems or recording of information) and scientific data. They are addressing the copyright of the data and control over the downloading permissions. They use MO – Media Objects – and the platform is very generic.

Mike Sharples –  talked about nQuire – the original version, which provided a tool for schools to developed and get involved in inquiry-based learning in schools. Open learning allow for sophisticated exploration, including the virtual microscope at the OU that allows the exploration of moon rocks. The system doesn’t work due to changes in technology. The OU approach is starting from mobile and inquiry-based learning, and how to engage citizens and a wider range of participants. The successes include “citizen inquiry” as a proposal which became a reality (originally mention in an ERC synergy proposal that wasn’t successful). Citizen inquiry is becoming a framework that is recognised that combines with citizen science and inquiry-based ideas. They also developed tools – the nQuire platform, supported by Nominet Trust. The nQuire0t platform is a more open activity which includes spot-it, sense-it and win-it missions. They have 1106 users and 187 projects. The nQuire-it platform is supported by an app that unlocks the sensors on the mobile phone that the system opens to a user. Challenge – how to get to the mass scale that is beyond surveying. There are issues of recruitment, think of engagement – such as a low barrier to entry and intimidating to newcomers. The introductory screen of many websites assumes existing interest. Also how to gain value from contributing positive feedback, join a community of practice (in future learn). The next issue is sustainability – how to keep a community going: identity (we’re rock hunters/cloud spotters), development – is there a sequence of forming, storming, norming, performing relevant to cit sci, and what guidance, curation and mentoring. Finally Maturity, including considering the maturity of a community and its mitosis (breaking up to new group). Need to thing of places for people to interact with each other, support each other.

The third challenge is how to do good science with valuable outcomes that is appropriate, reliable, robust and ethical.

Good citizen inquiry need to do valuable learning, linked to teaching, have a large scale data set, good element of engagement and serendipity, involvement of trained scientists and accurate data collection and analysis.

 

Some of the book chapters:

Maria Aristeidou provided the analysis of the nQuire It platform, identifying the design requirements and then evaluated the implementation. Participants self reporting didn’t report on the inquiry process and suggested recommendation and guidelines

Gill Clough talked about geocaching about the use of geocaching then and now – she done a study in 2007. She done a detailed mixed survey of closed and open questions, and she discovered a lot of learning – 84% learn something online. Geocaching have become a subscription app, not expensive, and the commercialisation led to debate in the community. GPS is also available on the phone, and it is relying on them.

Stuart Dunn and Mark Hedges look at citizen humanities and transmission of knowledge. Looked at crowdsourcing in humanities projects  http://www.ahrc.ac.uk/documents/project-reports-and-reviews/connected-communities/crowd-sourcing-in-the-humanities/ notice different types of projects that are close to the classical crowdsourcing. Crowd gets methodological proficiency, domain expertise about the subject – but outside universities. They also identified collective knowledge and practical skills.

 

Advertisements

Chapter in Routledge Handbook of Mapping and Cartography – VGI and Beyond: From Data to Mapping

Hot on the heels of the Routledge Handbook of Environmental Justice is thThe Routledge Handbook of Mapping and CartographyRoutledge Handbook of Mapping and Cartography. The handbook was edited by Alex Kent (Canterbury Christ Church University) who is currently the President of the British Cartographic Society and Editor of The Cartographic Journal; and Peter Vujakovic (also from Canterbury Christ Church University) who edited The Cartographic Journal.

Like the other handbooks, this is an extensive collection of 43 chapters and almost 600 page about maps and mapping. The chapters provide a vivid demonstration that cartography and map making is art and science, and that it links to many sciences and practices – from cognitive psychology to geodesy. The list of authors is impressive and includes many of the people that are shaping current cartographic research.

However, with a price tag of £195 for the Book, this collection is expensive and suitable for university libraries and to professional or commercial mapping organisation. The eBook is £35, which makes it much more affordable, though having used the online system, the interface could be better. Luckily the policy of Routledge permits sharing the chapters on personal websites.

My contribution to the book is in a joint paper that was led by Vyron Antoniou titled VGI and Beyond: From Data to Mapping. The chapter is building on a collaboration between Vyron, myself and Cristina Capineri during the COST Action on Volunteered Geographic Information (ENERGIC). In the chapter, we look at the concept of Volunteered Geographic Information (VGI) within practices of mapping and cartography and we attempted to provide an accessible overview of the area. We define what VGI is, provide an overview of the area, look at the advantages and disadvantages of VGI in mapping and cartography, and then look at the impacts of VGI on national mapping agencies, the public, and public bodies. The chapter is available here and we would be very happy to hear comments on it.

 

 

Caren Cooper’s Citizen Science: How Ordinary People are Changing the Face of Discovery

Today, Caren Cooper new book Citizen Science: How Ordinary People are Changing the Face of Discovery is going on sale in the UK. The book has been out in the USA for about a year, and it is a good point to review it.

The library of citizen science books is growing – there are the more literary books such as a diary of a citizen scientist, or citizen scientist, and a growing set of books that are edited collections such as Dickinson and Bonney Citizen Science: Public Participation in Environmental Research or the accessible The Rightful Place of Science: citizen science

Caren Cooper book is adding to this collection something important – a popular science book that provides an overview of the field, phenomena, and the movement of citizen science. As I was reading the book, I recognised the major challenge that she faced. Introducing citizen science is a complex issue: it happens in many areas of science that don’t always relate to each other, it got different structures and relationships between the scientists and the participants, and it can be close and personal, or remote and involving many thousands of people in online activities. In addition to this, citizen science can lead to many outcomes: improving education, contributing to a scientific project, self-empowerment and learning, addressing a local environmental problem and community cohesion, to name but a few. Packing it all into an accessible and engaging book is quite a feat.

Cooper has the experience in communicating citizen science through various blog posts that she published over the past 5 years and some of them have set the ground for this excellent book. The way she balanced the different aspects of citizen science is by taking different scientific fields as the main classification for the chapters, with 10 chapters covering different areas where citizen science have been used – from meteorology to public health. Each chapter provides both the factual information about the type of citizen science that is being used in it, as well as engaging stories and descriptions of the participants in them so we have a real and concrete image of how citizen science is being practiced.

Through the chapters, the reader is becoming familiar with the different modes and mechanisms that are being used in citizen science. For example, she uses the Brony@home project as a way to introduce volunteer computing and showing how the interactions around it can be meaningful and engaging, thus not marginalising this form of citizen science. Another example is the discussions in a later chapter on the use of Patients Like Me as a platform for citizen science, and the way that some of its experiment are challenging common medical practices in the ALS study on the impact of lithium.

One fantastic aspect of the book is the way that it respects and values all the forms of citizen science and the participants, and provide the reader with an opportunity to understand that it can come in many shapes, and she describes the difficulties and triumphs that came out from different studies, different forms of engagement, and different disciplines. She is providing a clear thread to link all these cases through the progression that she makes throughout the book from scientist-led projects (opening with Whewell tide study) and moving towards community-led studies towards the end, with examples from environmental justice campaigns. All these cases are described with warmth and humour that makes the material accessible and enjoyable to read.

Throughout the book, Cooper is making it clear that she sees citizen science as a critical part of the current landscape of science and society relationship, and she addresses some of the issues that are being argued about citizen science – for example, data quality – heads on. The book is making a strong advocacy for scientists and people who are involved in science communication to use citizen science as a way to improve the linkage between society and science.

The book is focusing, mostly, on American projects, case studies and practices – including social and cultural ones, but not to a degree that it makes it difficult to a reader from outside the US to understand. Only in a handful of cases I had to check on Wikipedia what a term or a phrase mean.

Overall, the book is engaging, enjoyable and informative. If you want an up-to-date introduction to citizen science, this book will open up the field to you. If you are working in a citizen science project or involved in developing one, you will learn new things – I did! 

 

 

 

Chapter in Routledge Handbook of Environmental Justice – Participatory GIS and community-based citizen science for environmental justice action

The Routledge Handbook of Environmental Justice has been published in mid-September. This extensive book, of 670 pages is providing an extensive overview of scholarly research on environmental justice

The book was edited by three experts in the area – Ryan Holifield from the University of Wisconsin-Milwaukee, Jayajit Chakraborty from the University of Texas at El Paso, and Gordon Walker from the Lancaster Environment Centre, Lancaster University, UK. All three have affiliations that relate to Geography, and geographic and environmental information play a major part in the analysis and action regarding environmental justice.

The book holds 51 chapters that are covering the theory and practice of environmental justice – from how it is analysed and understood in different academic disciplines, to the methods that are used to demonstrate that environmental justice issues happen in a place,  and an overview of the regional and global aspects of current environmental justice struggles. The range of chapters and the knowledge of the people who write them are making this collection a useful resource for those who are studying and acting in this area (though few top authors in this field are missing, but their work is well referenced)

However, with a price tag of £165 for the Book, the costs put an obstacle for those who need the information but suitable for universities and libraries. The eBook is £35, which makes it much more affordable, though having used the online system, the interface could be better. Luckily the policy of Routledge permits sharing the chapters on personal websites.

My contribution, together with Louise Francis, is in Chapter 24 –Participatory GIS and community-based citizen science for environmental justice action. In this chapter, we provide an overview of the use of participatory GIS in environmental justice action, but in particular, a detailed explanation of the methodology that we have developed a decade ago, with contributions from Colleen Whitaker, Chris Church and other people that worked with us a the time. The methodology is now used in the activities of Mapping for Change.  The methodology supports both participatory mapping and citizen science.

As we note in the chapter “Our methodology emerged in 2007, through the London 21 Sustainability Network project ‘A Fairer, Greener London’, which aimed to give six marginalised communities the opportunity to develop their own understanding of local environmental justice issues and supporting action plans to address them. The project was integrated closely with the project ‘Mapping Change for Sustainable Communities’ which was funded as part of the UrbanBuzz scheme. Both projects were based on accessible GIS technologies and available environmental information sources.

The methodology evolved into a six-stage process that is inherently flexible and iterative – so, while the stages are presented here as a serial process, the application of the methodology for a specific case is carried out through a discussion with the local community.” The chapter provides an example for the implementation of the methodology from the work that we carried out in the Pepys Estate.

If you want to read the whole chapter (and use the methodology) you can find it here. For any other chapter in the handbook, email the authors and they will probably share a copy with you. 

Chapter in ‘Understanding Spatial Media’ on VGI & Citizen Science

77906_9781473949683[1]The book ‘Understanding Spatial Media‘ came out earlier this year. The project is the result of joint effort of the editors Rob Kitchin (NUI Maynooth, Ireland), Tracey P. Lauriault (Carleton University, Canada), and Matthew W. Wilson (University of Kentucky, USA).

The book is filling the need to review and explain what happened in the part 20 years, with the increase use of digital geographic information that then became widespread and can be considered as a media – something that Daniel Sui and Mike Goodchild noted in 2001. The book chapters are covering the underlying technologies, the sources of the data and media that are part of this area, and the implications – from smart cities to surveillance and privacy.

My contribution to this book is in a chapter that belong to the middle section – spatial data and spatial media – and that provides an introduction to Volunteered Geographic Information and Citizen Science. If you’re interested, you can read the chapter here.

New paper – Exploring Engagement Characteristics and Behaviours of Environmental Volunteers

Engagement in environmental volunteering

A new paper that is based on the PhD work of Valentine Seymour is out. Valentine has been researching the patterns of volunteering in environmental projects at the organisation The Conservation Volunteers. In the paper, we draw parallels between the activities of environmental volunteers and citizen science participants. The analysis demonstrates that the patterns of participation are similar.

The paper is open access and available here

The summary of the paper is:

Environmental volunteering and environmental citizen science projects both have a pivotal role in civic participation. However, one of the common challenges is recruiting and retaining an adequate level of participant engagement to ensure the sustainability of these projects. Thus, understanding patterns of participation is fundamental to both types of projects. This study uses and builds on existing quantitative approaches used to characterise the nature of volunteer engagement in online citizen science projects, to see whether similar participatory patterns exist in offline environmental volunteering projects. The study uses activity records of environmental volunteers from a UK environmental charity “The Conservation Volunteers,” and focuses on three characteristics linked to engagement: longevity, frequency, and distance travelled. Findings show differences in engagement patterns and contributor activity between the three UK regions of Greater London, Greater Manchester, and Yorkshire. Cluster analysis revealed three main types of volunteer engagement profiles which are similar in scale across all regions, namely participants can be grouped into “One-Session,” “Short-Term,” and “Long-Term” volunteer. Of these, the “One-Session” volunteer accounted for the largest group of volunteers.

RGS-IBG 2017 – The role of expert knowledge in socio-environmental policy and decision making

Notes from two talks from the session on the role of expert knowledge. Details of the session in full are here.
The potential of citizen science to inform expert understanding: a case study of an urban river in London
Iain Cross (St Mary’s University, UK), Rob Gray (Friends of the River Crane Environment),  Joe Pecorelli (Zoological Society of London, UK)
Richard Haine (Frog Environmental, UK)
Abstract: “Increasingly, expert knowledge is becoming only one of many sources of understanding that influence environmental decision making and policy formulation. Traditional, top-down and technocratic modes of knowledge production are being challenged and, through what has been termed the ‘participatory turn’, knowledge is often co-produced among ‘experts’ and ‘non-experts’. A particularly widespread source of ‘non-expert’ knowledge is the citizen science (CS) community. CS projects can enable data to be collected over spatial or temporal scales that would be prohibitively expensive or logistically impossible for ‘expert’ data collection techniques. Whilst this data might be highly useful for policy and decision making, there can be a tension between the perceived reliability, accuracy or value of CS data compared to ‘scientifically collected’ data. This paper explores this tension in the context of an urban river CS project in London, through interviews with ‘experts’ and ‘non-experts’ from a variety of stakeholders. It highlights how significant events affecting the river environment mobilised public interest and the subsequent generation of ‘non-expert’ knowledge of the river. The paper provides an insight into how the perceived credibility and value of CS data by ‘experts’ can evolve over time, to become a significant driver of decision making. Key factors that have shaped this process include formal reporting mechanisms, partnerships with local authorities and statutory bodies, and corroboration of CS data with ‘expert’ data. The paper argues that CS blurs the traditional boundary between experts and non-experts and therefore challenges traditional definitions of ‘expert’ knowledge in environmental decision making.”
Iain Cross discussed citizen science as a source of expertise in an urban river. The situation is multiple stressors and degraded situation, ecosystems that deserve attention. They are subject to social/cultural interaction with the environment and nature. This makes it useful for citizen science – people volunteer to local groups, and also desire to do something – the intersection of volunteering and activism, there is a potential pool of local residents, and need for data. Look at the small catchment in west London ith multiple transport routes, lots of draining: urban run-off, sewage, domestic misconnections, surface water – and there are two major incidents in 2011 and 2013. The catchment partnership was created as a compensation for a major pollution incident. The £400K established a partnership that is working through the delivery of specific projects. Citizen science in three areas: water quality, riverfly monitoring, outfalls safari to identify where they are and their sources. The citizen science had a key role in the management decision. Try to identify differences between direct influence – data is used for regulation, and indirect. Examples for direct: reprioritisation of water company outfall projects (so where they dedicate resources to address them), and enforcement and additional investigations based on the data. Indirect – more reporting of water quality, empowering to understand the process a common language on what the regulator need, and exporting the model to neighbouring catchments. The research try to understand how did it became a credible source of knowledge, understand its influence and what happen in the future, through semi-structured interviews. So far there are 3 interlinked themes: early engagement with water company, a tight leadership of the project, and reliable data. Participants understand the regulatory environment , harmonisation of expert practices and reporting at conferences. In terms of project management 0 influence of certain people – and past contact and engagement with citizen science. The champions are very important – even within the regulators. The last thing is the production of good quality data – awareness of accreditation, QA process, spatial and temporal coverage attention and interpretation and reporting of data.
Future
Expert and Experiential Knowledge in Pollinator Policy: The Perspectives of Beekeepers Siobhan Maderson (Aberystwyth University, UK)
Abstract: “Recent policy initiatives aim to counter the precipitous decline of pollinators and thus secure their role in food security and broader ecosystem services. The practical experiences and observations of beekeepers are recognised as having the potential to both monitor, and improve, the wellbeing of pollinators As part of wider trends towards participatory governance, many initiatives notably stress the importance of engaging with beekeepers, as well as scientists, and other stakeholders whose study or practice holds the potential to improve environmental conditions that impact pollinator wellbeing. However, such multi-stakeholder engagement still prioritises ‘experts’, and struggles to adequately incorporate knowledge which contradict wider policies. This paper will discuss the perceptions of beekeepers on the relative influence and use of ‘expert’ and ‘experiential’ knowledge in pollinator policy-making. Unlike the expert scientific knowledge relied upon by policy-makers as central to EBPM, beekeepers’ understanding of bee health engages with systemic factors that are often hard to quantify or prove according to conventional scientific criteria. Beekeepers’ views result from long-term observation and engagement with specific local environments. Beekeepers are also a disparate community, holding contrary views on land use, agriculture, and the best means of ensuring pollinator wellbeing. My current PhD research focuses on interviews with long-term beekeepers whose tacit expertise is widely recognised throughout diverse beekeeping communities. I address the knowledges appropriated, and sidelined, in current pollinator policy, and how experiential knowledge is utilised by experts. I also address the challenges resulting from beekeepers’ tacit knowledge contrasting with current agricultural, land use, and economic policies.”
The research is concerned with pollinator decline, the threat to food security and the beekeepers seen as key stakeholders – both as monitoring: grounded knowledge in wellbeing and have the practical knwoledge. They can provide direct knwoeldge. The beekeepers also have a history of collaboration with scientists – e.g. providing details on harmful material (spraying incidents). Research include 36 beekeepers, archive and ethnography – many have a long term experience in the field. The discourse is about enthusiasm, citizen science, lay knowledge and related areas. She understand about environmental knowledge and observations, understanding their position within the community of practice and association, and also understanding views of policy making process and on the scientific process. The interviewees have massive knowledge – playing roles of inspectors, farmers, teaching others, board members of association, some several generations of beekeeping families – detailed local knowledge. The interviewees have STEM background. The results are showing that beekeepers combine tacit and explicit knowledge, and have profound specific local knowledge – microclimate, forage. Also had experience of involvement in policy and scientific research – they engage with entomologists. They do have empathy with farmers, frustration with voluntary initiatives and the wider food systems are seen as responsible for the problems. They collect data on phenology in the area, weather etc. There was a question about the debate and someone sceptic to media and public response to pollinator. In terms of participation in research – they do read scientific papers, but they feel that it is one way system – they put input and don’t feel that scientists take their views seriously. They feel lack of addressing local needs and policy process. They are doing lots of scientific processes – microscopy, pollen analysis and all sort of other information.