Into the night – training day on citizen science

dscn1936Last December, the Natural Environment Research Council (NERC) awarded funding to UCL Extreme Citizen Science group and Earthwatch as part of their investment in public engagement. The projects are all short – they start from January to March and included public engagement and training to early career researchers.

“Into the Night” highlights the importance of light pollution, a growing environmental stressor to both wildlife and humans, through collaborative and co-designed citizen science research. The project aims to increase awareness of this issue through two public workshops exploring the potential of two citizen science focal points – glow-worms and human wellbeing – explicitly linking ecological and human impacts. The project will culminate with a set of public activities (pilot data collection and educational) to coincide with Earth Hour (25.03.2017).

The project aims to build public engagement capacity through PhD internships with Earthwatch (Europe), CEH, Natural England and UCL, and forms a dedicated training day on the design and implementation of citizen science for 50 early-career researchers and PhD students.

The project is led by UCL (in collaboration with North Carolina State University – NCSU) and Earthwatch, bringing together leading research and practice in citizen science. It is the result of two co-design workshops, with over 30 participants from environmental science, social science, public health, National Parks, and NGOs. Based on this preparatory work, and with active training of early career researchers, we will run two focused workshops which will take place in dark sky reserves. These workshops will focus on two preliminary ideas for citizen science projects: a countrywide survey of glow-worms and the impact of artificial light on their activities, and the influence of lightscapes and dark green spaces on human wellbeing while balancing safety and concerns.

The two projects will generate public awareness and provide the public with opportunities to have debate and dialogue on the subject, as well as involvement in data collection and analysis. Results will be shared through social and traditional media. The outcome will advance ideas for a national citizen science project, which UCL and Earthwatch will take forward.

The training day run in Oxford on the 2nd February and during the day I gave two 45 minutes sessions. First, I provided an introduction to the field of citizen science, how to design a project, and how to evaluate such a project.

The session provided a brief overview of the types of citizen science that are relevant in addressing environmental challenges. We looked at classifications of citizen science projects, explore their potential goals, the process of recruitment and retention as well as the need to start project evaluation from an early stage. At the end the participants engage in a short exercise to consider how these elements can be used in the design of a citizen science project.

The second talk focused on technology.

The talk aim was described as follows: Current citizen science seems effortless…just download an app and start using it. However, there are many technical aspects that are necessary to make a citizen science project work. This session provided an overview of all the technical elements that are required – from the process of designing an app, to designing and managing a back-end system, to testing the system end to end before deployment. Again, at the end of the session, a short exercise considered the design of an app for a citizen science project that addresses light pollution.

 

Podcast – discussion with Liz Killen and Alice Sheppard on citizen science

Several weeks ago, Liz Killen, who is studying for an MSc in Science Communication at Imperial College organised an interview with me and Alice Sheppard about aspects of citizen science, for the I, Science the science magazine of Imperial College. This is the second time ExCiteS is covered in the magazine, after a report in 2013 by .

Editorial in Human Computation Journal – Creativity and Learning in Citizen Cyberscience

As part of a special issue of the open access Human Computation Journal, I am the co-author of the editorial Creativity and Learning in Citizen Cyberscience – Lessons from the Citizen Cyberlab Summit. Following the summit (see blog post here), Egle Ramanauskaite took the blog posts and edited them with her notes, which led to a summary and analysis of the summit. cyberlab

Here is the abstract:

“This article summarizes the Citizen Cyberlab (CCL) Summit, which took place at University of Geneva on 17-18th September 2015, and introduces the special issue on “Learning and Creativity in Citizen Science”. As the final event of a 3-year EU FP7 CCL project, the Summit sought to disseminate project results and reflect on the issue of citizen science (CS) as a participatory environment where opportunities for self-development and various types of creativity can arise. A
number of interesting themes emerged at the intersection of the work presented by project collaborators and external partners, including the different types of creativity that are evident in CS, the role of the community as the main medium for innovation and participant learning to occur, and the common challenges concerning the design, initiation and management of CS projects.
The current issue presents work done during the CCL project, as well as external project contributions, for which the main focus is on learning and creativity in CS. The set of articles addresses diverse aspects of the topic, ranging from empirical research on the phenomena themselves, to tools, platforms and frameworks developed specifically for citizen cyberscience (CCS) with creativity and learning in mind, and distinct CS cases where these phenomena manifest in previously undescribed and unexpected ways. We hope that the issue will be useful to researchers and practitioners who aim to study, evaluate
or design for learning and creativity in a range of CCS projects”

You can find the paper here.

 

The Rightful Place of Science: Citizen Science

‘The Rightful Place of Science: Citizen Science’ is a fairly slim and small format book. Darlene Cavalier and Eric B. Kennedy edited this short collection of papers that cadsc_0117me out earlier in 2016. The book is part of a series, from the Consortium for Science, Policy, and Outcomes (CSPO) at Arizona State University. The series aims are for ‘These books are brief, clear, and to-the-point, while at the same time tackling urgent topics across a range of complex techno-scientific subjects. The overall aim is to deliver thought-provoking contributions that explore the complex interactions among science, technology, politics, and society.and Citizen Science is clearly successful in doing this.

The book’s 6 chapters provide an excellent, and indeed, thought provoking, introduction to the field of citizen science. Darlene Cavalier introduce the topic with her personal journey into citizen science, and how local interest, career opportunities, and useful suggestions that led her to come up with initiatives such as Science Cheerleaders and SciStarter.

Eric Kennedy’s chapter provides an overview of citizen science, and importantly, addressing the all too often common question about the quality of the information, emphasising that it’s fitness-for-use that matter. The chapter is written from a perspective of science and policy studies and pays particular attention to the use of citizen science for policy – including the challenges that it faces, the multiple goals that a project might be expected to fulfil, as well as unintended outcome (e.g. undermining government led monitoring). He also highlights the need for policy to support citizen science – from a national level to the institution ethics committee level. This chapter is fairly dense with potential ‘hyperlinks’ and issues that you would want to explore more (including conceptualisation of science in society) and is doing this introduction mostly well.

In an excellent chapter by Caren Cooper and Bruce Lewenstein, the two meanings of citizen science are explored. The one that originate from the Alan Irwin (1995) book, emphasising the responsibility of science to society, which they call ‘democratic’ citizen science, while at the other end of the spectrum they position ‘participatory’ citizen science as practice in which people mostly contribute observations or efforts to the scientific enterprise, which originated with Rick Bonney (1996) work at Cornell Lab of Ornithology. While I’m not 100% convinced that ‘participatory’ is the correct word for the more top down citizen science that is closer to crowdsourcing, citizen science, the chapter is doing a very good job by providing concrete examples for each type of citizen science as well as demonstrating that this is not a dichotomy, and things are more mixed.

Robert Dunn and Holly Menninger chapter on turning learning the life sciences into research through citizen science, as well as David Coil on Citizen Microbiology, provide a vivid demonstration of the potential of citizen science to change existing processes, as well as making the complex process of taking samples and ensuring their quality, more transparent and open. Both chapters provide a lot to consider on how processes of teaching can be enhanced through active participation – such as Dunn and Menninger provocation to turn dissections into outlier detection in physiological studies.

In another outstanding chapter, Lili Bui discusses the important aspects of communicating a project, and what are the necessary ways by which project owners need to consider how their project will be promoted. She is pointing to public service broadcasting as a natural ally of citizen science, and show how such collaboration might work. This is something to watch as the Crowd and the Cloud series is getting ready to be broadcast. The chapter is providing the practical information, but also the first stages of conceptualising how people are going to hear about a given project.

Gwen Ottinger is also providing an excellent summary of social movement based citizen science. These are projects that are sometimes named civic science, and surely fall into either action research or cases of community led project. Ottinger shows the special characteristics of this specific version of citizen science, including the need to allow methods to be ‘hacked’, legitimacy, the consulting role of scientists, and other critical issues. She also demonstrates how tensions between doing the science right, and achieving results with good enough science can, and will, emerge in these situations.

In the final chapter, Cavalier and Kennedy are developing the themes of the book and suggesting the places where citizen science can play a role in decision-making processes.

Overall, the book provides a light introduction to citizen science – not all citizen science is captured, but by reading it you can find what is citizen science and how it can play a role in policy decision. Its chapters are the perfect length to serve in teaching or discussion about citizen science, and the book itself is inexpensive (about £7).

Crowdsourcing the Future?

About a month ago, on 7th December 2016, DR Kingsley Purdam (Manchester) organised a one day workshop on citizen science, and in particular on citizen science from a social science methodological perspective. The day organised with the support of the National Centre for Research Methods (NCRM).

The purpose of the workshop/conference was to explore the future of citizen science and citizen social science methods as research tools. In particular, understanding the different types of applications, methods, the data and the challenges posed. Because the point of view was based on methodologies in social sciences, issues about expertise, divisions of labour, different ways of seeing, data quality, questions about what might still be going undocumented and the ethical issues raised were all discussed.

The workshop was structured around two blocks of discussion – the morning around methods, data and ethics, while the after looked at issues of participation and working in the area of policy, as well as a discussion of the specific issues that need to be discussed for a citizen social science project.

As an introduction, both natural science and social science projects were presented. You can find a summary on twitter of some of the points that came up during the day with the hashtag #crowdfutures.

Some of the important tweets are captured here with comments (bit storify style).

Chris Lintott started the day with a discussion of large-scale, online citizen science projects, with the story of Zooniverse.

People participate in Zooniverse because they want to do something useful, and he pointed to the complexities of combining machine learning with citizen science effort while maintaining motivation and interest.

While I presented after Chris, and mostly talked about a more social theory explanation of what Extreme Citizen Science is – in particular, the creation of technologies that are embedded with a social participatory process. Many of the processes that I described were small-scale, and local. I have also pointed to the growth of citizen science and the Doing It Together Science project that we currently run.

However, in the discussion that followed we agreed that the nature of participation and many of the issues that come in these projects are similar across the scales even if the mechanisms for engagement are different.

Ben Rich (BBC), covered issues of engagement in weather observation that the BBC implemented successfully, with million observations and report in the first year

Hilary Geoghegan (Reading) & Alison Dyke (SEI)  talked about the UK EOF study on the motivation of participants and the ethics of participation, as well as the tensions between contributory and co-created citizen science in environmental research.

Will Dixon (Manchester) described the Cloudy with Pain project which engaged 12,000 participants and receives substantial information. The project also experiments with some access to data and opportunity for analysis by the participants themselves.

Kingsley Purdam (Manchester) talked about the complexity of citizen social science about begging, when the beggars are involved in data collection. Another Manchester-based project looked at linguistic diversity in street signs

The next set of talks raised some important point, including by Erinma Ochu on the process of creating the Robot Orchestra as a participatory DIY electronic and creative process, raising issues about expertise and success (the orchestra is in very high demand); Monika Buscher (Lancaster) emphasising that citizen social science is not about bigger torch to understand reality, but critique science & social science; and Alex Albert (Manchester), who run  project to encourage citizen reporting of empty houses and consider what should be done with them, highlighted the challenges of starting a project and recruiting participants. Liz Richardson (Manchester), talked about the interface between participatory action research and citizen science, and described her work with a community who collected data and asked for guidance on how to analyse it. The three talks by Monika, Alex, and Liz raised many issues about the participation of people in different stages of the research process, and the role of established researchers in such projects.

The last set of talks focused back on ecological and medical projects: Rachel Webster of Manchester Museum explained the museum digitising effort, and how they are making progress one MSc in computing student at a time – the integration of citizen science with small museum activities is a resource challenge, so the work with students require some compromises. There was also a demonstration of setting systems for citizen science and then discovering how they are used:

Lamiece pointed that a challenge with such approach is to get the app downloaded and to see continued use, although so far there are 1500 participants, 800,000 observations. There is also Data challenge of presence/absence reporting to make sense of what the data means.

Ian Thornhill fro mEarthWatch who coordinates the FreshWater Watch project demonstrate how simple data collection tools open up space for participant’s innovations in tools and in data collection. He also provided different models of how projects are run – corporate sponsorship, or by payment from interested communities.

Some of the points in the discussion include the need to balance scientific data collection and activism (especially for projects such as those that Liz Richardson described). Also balancing small scale, deep engagement or large datasets, wide engagement – e.g. for 3 years as researchers on projects that got limited funding and a goal. The need to consider what participation is doing to citizen science, and what science is doing to it? How to balance between the two? and in general, the wider societal impacts of projects cannot be ignored. There are also people that coming from a policy perspective, and try to push for procedural aspects, not interested in engagement issues.

There are also ethical issues such as those that relate to volunteer management – what should be done with contributors that are not doing good work? exclude them? train? ignore them? There is a constant need to think of useful roles and how making people valued for their contribution.

Another set of questions explored what citizen social science does to science? How are issues about ownership,  responsibilities to ensuring data quality integrated into project planning and management?

New paper: Associations for Citizen Science: Regional Knowledge, Global Collaboration

When the new journal about Citizen Science established, one of the articles that the editorial team thought should be included is a paper that describe the development of associations dedicated to the practice of citizen science. There are now several of these: the Citizen Science Association (CSA), the European Citizen Science Association (ECSA), and the Australian Citizen Science Association (ACSA).

Following the Citizen Science 2015 conference, under the guidance of Martin Storksdieck, a Professor at the College of Education and School of Public Policy in 
Oregon State University, we set out to write the paper. The end results is a paper that discusses the need for organisations that deal with citizen science and the specific directions that each organisation adopted in order to address the local social, political, and scientific situation in which it evolved.

The abstract read: “Since 2012, three organizations advancing the work of citizen science practitioners have arisen in different regions: The primarily US-based but globally open Citizen Science Association (CSA), the European Citizen Science Association (ECSA), and the Australian Citizen Science Association (ACSA). These associations are moving rapidly to establish themselves and to develop inter-association collaborations. We consider the factors driving this emergence and the significance of this trend for citizen science as a field of practice, as an area of scholarship, and for the culture of scientific research itself.”

Here is the paper itself Storksdieck, M. et al., (2016). Associations for Citizen Science: Regional Knowledge, Global Collaboration. Citizen Science: Theory and Practice.. 1(2), p.10. DOI: http://doi.org/10.5334/cstp.55

Has GIScience Lost its Interdisciplinary Mojo?

The GIScience conference is being held every two years since 2000, and it is one of the main conferences in the field of Geographic Information Science (GIScience). It is a special honour to be invited to give a keynote talk, and so I was (naturally) very pleased to get an invitation to deliver such a talk in the conference this year. The title of my talk is ‘Has GIScience Lost its Interdisciplinary Mojo?’ and I’m providing here the synopsis of the talk, with the slides.

My own career is associated with GIScience very strongly. In 1992, as I was studying for my undergraduate studies with a determination to specialise in Geographic Information Systems (GIS) by combining computer science and geography degrees, I was delighted to discover that such studies fall within a new field called GIScience. The paper by Mike Goodchild that announced the birth of the field was a clear signal that this was an area that was not only really interesting, but also one with potential for growth and prospects for an academic career, which was very encouraging. This led to me to a Masters degree which combined environmental policy, computer science, and GIS. During my PhD, I started discovering another emerging area – citizen science, with two main pieces of work – by Alan Irwin and Rick Bonney marking the beginning of the field in 1995 (I came across Irwin’s book while looking into public understanding of science, and learn about Bonney’s work much later). According to OED research, the use of citizen science can be traced to 1989. In short, GIScience and citizen science as a recognised terms for research areas have been around for about the same time – 25 years.

Over this period, I have experienced an inside track view of these two interdisciplinary research fields. I would not claim that I’ve been at the centres of influence of either fields, or that I’ve analysed the history of these areas in details, but I followed them close enough to draw parallels, and also to think – what does it mean to be involved in an interdisciplinary field and what make such a field successful? 

The use of terms in publications is a good indication to the interest in various academic fields. Here are two charts that tell you how GIScience grown until it stalled around 2010, and how citizen science have been quiet for a while but enjoying a very rapid growth now.

First, from Egenhofer et al. 2016 Contributions of GIScience over the Past Twenty Years, showing the total number of publications with the keywords GIS or GIScience, based on a Scopus query for the years 1991 through 2015, executed in July 2015. Notice the peak around 2009-2010.

gisciencepublications

And here is Google Trends graph for comparing GIScience and Citizen Science, showing that in the past 8 years citizen science has taken off and increased significantly more than GIScience:

gisciencecitizenscience

I think that it’s fair to say that these two fields as inherently interdisciplinary.

In GIScience, as Traynor a Williams identify already in 1995: “Off-the-shelf geographic information system software is hard to use unless you have sufficient knowledge of geography, cartography, and database management systems; are computer-literate” and to these observations we need to add statistics, algorithms development, and domain knowledge (ecology, hydrology, transport).

Citizen Science also includes merging knowledge from public engagement, education, science outreach, computer science, Human-Computer Interaction, statistics, algorithms and domain knowledge (e.g. ecology, astrophysics, life science, digital humanities, archaeology).

Both fields are more than a methodology – they are contributing to scientific research on different problems in the world, and only a very reductionist view about what they are will see them as ‘a tool’. They are more complex than that – which is why we have specific scholarship about them, periods of training, dedicated courses and books, conferences and all the rest.

A very shallow comparison will note that GIScience was born as an interdisciplinary field of study, and experience consolidation and focus early on with research agendas, core curriculum which was supposed to lead to stability and growth. This did not happen (see Patrick Rickles comments, from an interdisciplinary research perspective, on this). Take any measure that you like: size of conferences, papers. Something didn’t work. Consider the Esri UC, with its 15,000 participants who are working with GIS, yet only a handful of them seem to be happy with the identity of a GIScientists.

In contrast, Citizen Science is already attracting to its conferences audience in the many hundreds – the Citizen Science Association have 4000 (free) members, The European Citizen Science Association 180 (paid) – and that is in the first 2 years since they’ve been established. It doesn’t have an explicit research agenda, and have an emerging journal, but the field also benefits from multiple special issues – there is almost a competition among them.

As a GIScientist this is a complex, and somewhat unhappy picture. What can I offer to explain it? What are the differences between the two fields that led to the changes and what we can learn from them? It is worth exploring these questions if we want the field to flourish

Engaging with Interdisciplinary research

The wider engagement with these fields is also linked to my personal and direct engagement in GIScience research that goes beyond disciplinary boundaries. Over the years, I was also involved in about 20 multidisciplinary, cross-disciplinary, interdisciplinary, and transdisciplinary projects. I also found myself evaluating and funding x-disciplinary projects (where cross, inter, multi or trans  stand for x). The main observations from all these is that many times, projects that started under the interdisciplinary flag (integrating knowledge from multiple areas), ended with mostly multidisciplinary results (each discipline addressing the issue from its own point of view). However, here are nine lessons that I’ve learned, which can also help evaluating the wider fields of GIScience and citizen science.

First, Get them young & hungry – when established professors are joining an interdisciplinary project, usually they have a clear personal research agenda, and the likelihood that they will be open to radically new ideas about their area is low. You can get excellent multidisciplinary projects with experienced researchers, but it is much harder and rarer to have interdisciplinary or transdisciplinary project – there is too much to lose. That mean that early career researchers are the most suitable collaborators who can develop new directions. At the same time, in terms of job potential and publications, it is very risky for PhD students to get into interdisciplinary research as this can reduce their chances of securing an academic job. With appropriate funding (as we done in Bridging the Gaps) and specific support to people at the more secured stage of early career (after securing a lectureship/assistant professor position), we’ve seen interdisciplinary collaboration evolve.

Second, in x-disciplinary projects, you’ll find yourself being undermined, unintentionally which will hurt. Disciplines have different notion of ‘truth’ and how to get to it (in philosophy: epistemology and ontology). What is considered as an appropriate methodology (e.g. fixation with randomised control trials), how many people need to participate, how they are selected and more. When people from another discipline use these concepts to question your practice it can feel as undermining the expertise, and the disciplinary knowledge that you are offering to the project…

logo-ercThird, there are also cases of being undermined, intentionally. Interdisciplinary proposal are evaluated by experts from different fields, and no matter how much they are told to focus their comments on their discipline, they will comment on other aspects. Moreover, proposal evaluators can assess the novelty in their area, not the overall innovation, reducing the likelihood of ‘outstanding’ mark that make it more likely to get funded. For example, in an early version of what was now funded by both EPSRC and ERC, a Research Challenges Board rejected the proposal because it “seemed so high risk to us is that there are many links in the chain… is it clear that even if everything works there would be real value from these sorts of devices? You use the example that the forest people might be able to tell if there were poachers in the area. Yet can that really be shown? Do forest people understanding probabilistic reasoning? If there any evidence that illiterate people can use maps, digital or otherwise?“. It’s important to note that both ERC and the EPSRC programmes were aimed at risky, interdisciplinary projects, but in more standard programmes, it is difficult to get funded.

Fourth, look out for the disciplinary scrounger. They might not be aware that they are disciplinary scrounger, but this is how it happens: Interdisciplinary research open up new tools and methodologies and people who know how to use them for the research team as a whole. While there is a supposed shared goals that will provide benefits to all sides, a savvy researcher will identify that there is an opportunity for using resources to advance their own research in their discipline, and find ways to do that, even if there are no apparent benefits to the side that give the resources. This act is not necessarily malicious – from the researcher perspective, it is exactly a demonstration of interdisciplinary contribution.

Fifth, in an interdisciplinary research it is critical to develop a common narrative, early. As the project progresses, it will shift and change. Because of the disciplinary differences, it is very easy to diverge and work on different issues, with some relationship to the original proposal. Especially in case where the funder evaluate the project against the proposal (e.g. in Horizon 2020), it’s critical to have a common story. The project can be harmonious and show good progression, but without a common narrative that is shared across the team, there can be troubles when it come to evaluation by external people as the outputs do not all fit neatly to their idea of what the project is about. In another project, Adaptable Suburbs, we deliberately shared reading lists between teams to help understanding each other, which bring us to…

Sixth, highstreetconsider the in-built misunderstanding. Terminology is an obvious one. For Anthropology, scale, from small to large is individual, household, community – and for cartography city is small scale, while house is large scale. However, these are easy – it can take time, and long discussions to discover that you’re looking at the same thing but seeing something completely different. As Kate Jones suggested when she worked on the Successful Suburban Town Centres project. In the image above urban designers see the streets, but not the people, while human geographers who look at census data will tend to see the people, but not the urban structure that they inhibit. There are many other examples of subtle, complex and frustrating misunderstanding that happen in such projects.

Seven, there will be challenges with publications – those that are written. Publications are critical academic outputs, and important for the individuals, teams, and the project as a whole. Yet, they are never easy – different disciplines have very different practices. In some, the first position in the author list is the most important, in another, the last. Some value single author monograph (Anthropology), other conference paper with multiple authors (Computer Science). This creates tensions and a need for delicate discussions and agreement. Moreover, and linked to Six – writing joint publications is an opportunity to expose interdisciplinary misunderstanding, but that make the writing process longer.

Eight, it is important to realise that many times interdisciplinary publications will never be written  – because academic careers, promotion criteria, visibility, and recognition depends on disciplinary practices, within projects disciplinary papers and outputs are written first. The interdisciplinary outputs left to a later stage – and then the project end and they never get written. They are actually dependent on voluntary investment of multiple contributors, which make it very difficult to get them done!

Finally, nine, is the importance of coffee and lunch breaks (and going out together). Team members in interdisciplinary projects are usually coming from different departments, and it is challenging to organise a shared space. However, by putting people together – computer scientists sitting next to a geographer, designer, anthropologists – it is possible to achieve the level of trust, relationship and the development of new ideas that are needed in such projects. In ExCiteS, we have a designated ‘social officer’ for the group.

On the basis of these experiences, I’d argue that Interdisciplinarity is always hard, risky, require compromises, accommodations, listening, and making mistakes. The excitement from the outputs and outcomes does not always justify the price. Frequently, there is no follow-on project – it’s been too exhausting. The analysis that Patrick Rickles done across the literature can provide you with further information on challenges and solutions.

From projects to research fields

Considering the project level challenges, viewing interdisciplinary areas of studies emerging is especially interesting. You can notice how concepts are being argued and agreed on. You can see what is inside and what is outside, and where the boundary is drawn. You can see how methodologies, jargon, acceptable behaviour, and modes of operations get accepted or rejected – and from the inside, you can nudge the field and sometimes see the impact of your actions. Here are some observations about GIScience and citizen science evolution.

First, citizen science seem to be growing organically, without a deliberate attempt to set a research agenda, define core curriculum, or start with nationally focused research centres, in contrast to GIScience, who had all of these. There is an emergent research agenda: data quality, motivations & incentives, interaction design, management of volunteers, and more. These are created according to views of different people who join the research area, opening opportunities for new collaborations. It is noted that GIScience, in practice, allowed for many other areas to emerge – for example crowdsourcing, which was not in the last version of the research priorities that are listed on UCGIS website, and also seemed to stop doing these exercises.

Second, there is an interesting difference in inclusiveness. Although there are different variants of citizen science, across events, conferences and projects, there is an attempt to be inclusive to the different variants (e.g. volunteer computing or ecological observations) though tensions remain and need maintenance. In GIScience, there have been inclusive activities, of workshops that brought together people from Human-Computer Interaction in the late 1980s, or the excellent series of meetings about GIS and Environmental Modelling. There is clear separation, for example in spatial analysis, where different methods are now appearing in ecology, but they are not shared back with the general GIScience. It is worth considering how to make such events and consider active inclusiveness, where researchers from different areas will find their place and reasons to participate.

It might be that citizen science is also more inclusive because of the interaction with people outside academia (participants) and the need to focus on things that matter to them, whereas GIScience has largely been for/by scientists. However, citizen science gets backlash for “not doing REAL science”, but it’s still grown. Maybe, in the process of GIScience trying to validate itself, it’s cut itself off from other research areas (even though GIS use continues to grow)?

Third, there is a sharp difference in the relationship with practitioners – GIScience decided to focus on fundamental questions and laws, while citizen science is a deliberate integration between researchers (the science of citizen science) and practitioners who are running volunteering programmes. The interaction between practice and science is bringing research questions to light and provide a motivation for addressing them with interdisciplinary teams. It might be that separation between science and systems in GIScience need to be blurred a bit to open up new opportunities.
bookcoverFinally, GIScience benefited from having a disciplinary name, and attention by a growing group of researchers who are committed to the field – job titles, positions, journals and conference do matter in terms of visibility and recognition. Citizen science, on the other hand, is only now starting to have a proper home and networks. There are ongoing discussions about what it is, and not everyone in the field is using the term ‘citizen science’ or happy with it. The actual conference that led to the creation of the Citizen Science Association was titled ‘Public Participation in Scientific Research'(!). The coherence and focus on understanding how important key phrases are, more than dislike of their potential meaning is valuable for the coherence of a field and stating that you have knowledge that can be shared with others.

New areas for Interdisciplinary research

To complete this discussion, I point to the opportunities that citizen science open for interdisciplinary collaborations with GIScience – It provides examples for longevity of VGI data sources, that can be used to address different research questions. There are new questions about scales of operations and use of data from the hyper local to the global. Citizen science offer challenging datasets (complexity, ontology, heterogeneity), and also a way to address critical issues (climate change, biodiversity loss). There are also usability challenges and societal aspects.

In final account, GIScience got plenty of interdisciplinary activity in it. There are actually plenty of examples for it. In terms of ‘mojo’ as being attractive for researchers from other area to join in, there are plenty of opportunities – especially if the practice of using GIS within different research and practice problems is included in the framework of GIScience.


This post benefited from discussions and comments from Patrick Rickles, who is our local expert in GIS use in an interdisciplinary settings. You should check his work.