Yesterday, Tenille Brown led a Twitter discussion as part of the Geothink consortium. Tenille opened with a question about liability and wrongful acts that can harm others

If you follow the discussion (search in Twitter for #geothink) you can see how it evolved and which issues were covered.

At one point, I have asked the question:

It is always intriguing and frustrating, at the same time, when a discussion on Twitter is taking its own life and many times move away from the context in which a topic was brought up originally. At the same time, this is the nature of the medium. Here are the answers that came up to this question:

You can see that the only legal expert around said that it’s a tough question, but of course, everyone else shared their (lay) view on the basis of moral judgement and their own worldview and not on legality, and that’s also valuable. The reason I brought the question was that during the discussion, we started exploring the duality in the digital technology area to ownership and responsibility – or rights and obligations. It seem that technology companies are very quick to emphasise ownership (expressed in strong intellectual property right arguments) without responsibility over the consequences of technology use (as expressed in EULAs and the general attitude towards the users). So the nub of the issue for me was about agency. Software does have agency on its own but that doesn’t mean that it absolved the human agents from responsibility over what it is doing (be it software developers or the companies).

In ethics discussions with engineering students, the cases of Ford Pinto or the Thiokol O-rings in the Discovery Shuttle disaster come up as useful examples to explore the responsibility of engineers towards their end users. Ethics exist for GIS – e.g. the code of ethics of URISA, or the material online about ethics for GIS professional and in Esri publication. Somehow, the growth of the geoweb took us backward. The degree to which awareness of ethics is internalised within a discourse of ‘move fast and break things‘, software / hardware development culture of perpetual beta, lack of duty of care, and a search for fast ‘exit’ (and therefore IBG-YBG) make me wonder about which mechanisms we need to put in place to ensure the reintroduction of strong ethical notions into the geoweb. As some of the responses to my question demonstrate, people will accept the changes in societal behaviour and view them as normal…

 

After a very full first day, the second day opened with a breakfast that provided opportunity to meet the board of the Citizen Science Association (CSA), and to talk and welcome people who got up early (starting at 7am) for another full day of citizen science. Around the breakfast tables, new connections were emerging. Similarly to the registration queue in the first day, people where open and friendly, starting conversations with new acquaintances, and sharing their interest in citizen science. An indication to the enthusiasm was that people continued talking as they departed to the morning sessions. CSA breakfast

5A Symposium: Linking Citizen Science and Indigenous Knowledge: an avenue to sustainable development 

The session explored the use of different data collection tools to capture and share traditional knowledge. Dawn Wright, Esri chief scientist started with Emerging Citizen Science Initiatives at Esri. Dawn started with Esri view of science – beyond fundamental science understanding, it is important to see science as protecting life, enabling stewardship and to share information about how the Earth works, how it should look (geodesign) and how we should look at the Earth. As we capture the data with various mobile devices – from mobile phones to watches and sensors we are becoming more geoaware and geoenabled. The area of geotechnologies that enable it – are apps and abilities such as storytelling are very valuable. Esri views geoliteracy as combination of understanding geography and scientific data – issues are more compelling when they are mapped and visualised. The Collector for ArcGIS provide the ability to collect data in the field, and it has been used by scouts as well as in Malawi where it is used by indigenous farmers to help in managing local agriculture. There are also abilities to collect information in the browser with ‘GeoForm’ that support such data collection. Maps were used to collect information about street light coverage and buffering the range that is covered. A third method is a StoryMaps.arcgis.com that allow to tell information with a narrative. Snap2Map is an app that allow to link data collection and put it directly to story-maps. There is also a crowdsource.storymaps.arcgis.com that allow collection of information directly from the browser.

Michalis Vitos, UCL – Sapelli, a data collection platform for non-literate, citizen-scientists in the rainforest. Michalis described the Extreme Citizen Science group – which was set up with the aim to provide tools for communities all over the world. In the Congo-basin communities face challenges from illegal logging and poaching , but forest people have direct competition for resources such as the trees that they use, and with the FLEGT obligations in the Republic of Congo, some protection is emerging. The team collaborate with a local NGOs which works with local communities, and there are challenges including literacy, energy, and communication. Sapelli collector is an application work with different levels that allow the data collection area. The Sapelli launcher locks the interface of the phone, and allow specific functions to be exposed to the user. The issue of connectivity was address in communication procedures that use SMS. The issue of providing electricity can be done in different ways – including while cooking. There is a procedure for engaging with a community – starting with Free and Prior Informed Consent, and the process start with icons, using them in printed form and make sure that the icons are understood – after the agreement on the icons, there is an introduction to the smartphones – how to touch, how to tap and the rest of the basics. The next stage is to try it in the field. Sapelli is now available in Google Play – the next stage is to ensure that we can show the participants what they collected, but as satellite images are difficult to obtain, the group is experimenting with drone imagery and mapping to provide the information back to the community. In terms of the results to the community, the project is moving from development to deployment with a logging company. The development of the icons is based on working with anthropologists who discuss the issues with the community and lead the development of the icons. Not all the icons work and sometime need to be change. The process involved compensating the community for the time and effort that they put in.

Sam Sudar, University of Washington – Collecting data with Open-Data-Kit (ODK) - Sam gave a background on the tool – the current version and the coming ODK 2.0. ODK is information management tools for collecting and storing data and making it usable, targeted at resource-constrained environment – anywhere where there is limited connectivity, without assuming smartphone literacy. It is used all over the world. It is being used in Kenya, and by Jane Goodall Institute (JGI) in Tanzania, the Surui tribe use it in Brazil to gain carbon credits, and the Carter Center in Egypt for election monitoring, as well as WWF in Rwanda. The technology is used in very diverse ways. Need to consider how technology empowers data collection. The ODK workflow is first, build the form, collect the data, and finally aggregate the results. ODK build / ODK XLSform is the way to build it in Excel, then there is ODK collect to render the forms, and finally ODK aggregate can run locally or on Google App Engine. There is a strong community around ODK with much support for it. In ODK 1.0 there is no data update on the mobile device, as it replicated the paper process. There is limitation for customisation of the interface, or linking to sensors. ODK 2.0 can provide better abilities and it allow syncing of information even it is done on the cloud. The ODK survey replacing ODK collect, and the ODK tables is a way to interact with data on the device. The intention is to make it possible to interact with the data in an easier way.

A question from the audience asked if local communities worries about the data collected about them? ODK work with a lot of medical information, but the team doesn’t goes on the ground so it is left to whoever use the system to ensure ethical guidelines are followed. Michalis noted that there are not only problems with external body, but also cultural sensitivities about what data should be seen by whom, and there is an effort to develop tools that are responsive to it.

Tanya Birch, Google Earth – Outreach Community-based field data collection and Google mapping tools the video include Jane Goodall work in Tanzania with Chimpanzee, due to habitat lost, there are less than 300,000 chimpanzee left in the wild. In the video, Lillian Pintea (JGI) noted the importance of satellite images that demonstrate all the bare hills in the area of Tanzania. That lead to improve the life of the local villagers so they become partners in conservation. The local communities are essential – they share the status of the work with the people in the village. The forest monitor role is to work across the area, collect data and monitor it to ensure that they can collected data with ODK. Location information is easier in tablet and then upload it to Google, and then it is shared with global effort to monitor forests. Gombe national park is the laboratory for scaling up across the area of habitat of Chimpanzees and using Google abilities and reach to share it widely.

Another question that came up was: How you have used the tools with youth or challenges of working with young people? Dawn noted that the engagement with youth, the term digital native is true and they end teaching the teachers on how to improve the apps. The presentations discussed the simplicity in technology so you don’t need to know what is going on in the background. Another question is: do people want to change the scale of analysis – standing in the point and taking a picture of a mountain, and how to address different scales? Dawn noted that the map as part of the collection tool allow people to see it as they collect the data and for example allow them to indicate the scale of what they viewed. Michalis noted that there is also the option in Sapelli to measure scale in football pitches, and Luis noted that in CyberTracker, there is an option to indicate that the information was collected in a different place to where the observer is. Data sharing is something that is important, but make sure that it can be exported in something as simple as

6E Symposium: Human-Centred Technologies for Citizen Science 

Kevin Crowston (Syracuse U.) & Andrea Wiggins (U. Maryland  & symposium convener): Project diversity and design implications describe a survey in which most attention was paid to small projects, and by surveying a wider range of projects they discover different practices. To evaluate the design implication they suggested that we need to understand what the goal of the project, the participation activities – from science, conservation, to photography – different things that people are doing, with observations is the most common type of contribution (see First Monday paper). Data quality come up in all the projects and there are different strategies to deal with it. There are diversities of engagement – from conference and meetings to social media. There are also rewards for participation – some projects are not doing rewards at all, others provide volunteer appreciation, training , equipment and another approach is to provide competitive rewards in leaderboards. There are also socialisation – and even formal education. Funding – diverse, from grants, private contributions, to sponsorship and sustainability is an issue.

Mobile and Social Technologies
-Anne Bowser (U. Maryland)  Gamifying phenology with Floracaching app – geocaching for plants – the application focuses on phenology and earlier version was developed for Project BudBurst. Traditional volunteers focus contribution to science, while millennials might be interested in mobile app that is based on games. Embedded maps can be used to create a cache and there is a leader-board and points. Floracaching was created from paper prototyping and focus groups. They found perception of gamification was important to millennials, they also enjoyed competition. Also wanted to be told what to do and feedback on how they’ve done. ‘I’m not going to drive an hour to see a plant bloom’ . Missions can be added to the design and help people to learn the application and the data collection.

-Michalis Vitos (UCL): Sapelli, a mobile data collection platform for non-literate indigenous communities, Michalis covered Sapelli, and the importance of the interface design (see previous session). The design of the icons is being discussed with, effectively, paper prototyping

-Muki Haklay (UCL): Geographical human-computer interaction for citizen science apps (I’ll blog it later!)

-Matt Germonprez, Alan Kolok, U. Nebraska Omaha, & Matt Levy (San Francisco State U.): Enacting citizen science through social media - Matt come from a technology angle – he suggested that social media is providing different form of information, and social media – can it be integrated into a citizen science projects. The science project is to monitor Atrazine which started in 2012, with a process similar to a litmus test, the project worked, but they wanted to use social media in the social setting that they work. Facebook wasn’t used beyond the information, but Twitter and Instagram was used to report observations publicly. The problems – no social conversations, so the next stage they want to maintain social conversation as the next goal. The  project can be found when you search for Lil’ Miss Atrazine.

Developing Infrastructures
-Jen Hammock (Smithsonian Institution): An infrastructure for data distribution and use, the aim of the project of looking at snails – findability problem, a tool that they want to develop is for data search – so following different sources for information, and merging the taxa, location, as well as providing alerts about interests. Notification will be provided to the researcher and to the contributor. There can be knowledge about the person that contribute the information. There are technical and social barriers – will researchers and experienced naturalists be interested in sharing information.

-Yurong He (U. Maryland): Improving biodiversity data sharing among diverse communities. looking at biodiversity – and the encyclopaedia of life. There are content partners who provide the data. She looked at 259 content partners and found 6 types of data providers – and they are professional organisations that operate over time such as IUCN, NHM etc. The second type is repositories, professional database emerge in the 1990s. There are citizen science intiative and communities of interest, such as Xeno-Canto for bird song. Fourth, social media platforms such as wikipedia,  Fifth, education communities who add information while they focus on education and finally subsidiaries. We need to know the practices of the providers more to support sharing of information.

-S. Andrew Sheppard (U. Minnesota & Houston Engineering, Inc.): Facilitating scalability and standardization. Andrew talked about the wq framework. He focused on collection, storage and exchange. Standards are making possible to make projects work together, there are devices, field notes, computers, phones – but it is challenging to coordinate and make them all work together. Web browsers are based on standards are making it possible to work across platforms. Javascript is also supported across platforms. The wq.app provide the ability to collect information. The exchange require sharing data from different sources, Need to build the software to adapt to standards – wq.io is a platform to allow the creation of multiple links. Use standards, HTML5 and build adaptable tools for data exchange

-Stuart Lynn, Adler Planetarium & Zooniverse: Developing tools for the next scientific data deluge. Stuart discussed about their online community. They have 1.2m users. The challenge in the future is that there are going to be many projects and data sources that give huge amount of data. The aim is to partner with machine learning algorithm developers but how to keep the crowd interested and not just give the most difficult cases with no opportunity to learn or progress slowly. Gamification can be stressful, so they try to give more information and learning. They also try to create a community and discuss the issues. There is huge distribution of comments – and deepening engagement. There is no one size fits all and we need to model and understand them better.

Contributors and Communities
-Jenny Preece (U. Maryland): Motivating and demotivating factors for long-term participation – what motivate people to come back again and again. The different motivational aspects – describing the work of the late Dana Rotman who collected information in the US, India and Costa Rica. 142 surveys from the us, 156 from India and also interviews in the three countries. She used grounded theory approach and developed a framework initial, and for long term impact there are internal and external motivation. Demotivations – time, problems with technology, long commitment with the task.

-Carsten Oesterlund, Gabriel Mugar, & Kevin Crowston (Syracuse U.): Technology features and participant motivations, the heterogeneity and variety of participants – how might we approach them? people change over time? looking at zooniverse – specifically planet hunters, there are annotations, talk and other sources of information. The talk pages – new comers and encouraged to annotate and comment about the image and also looking at what other people have done. They also find people that are more experienced. Use of talk change over time, people start putting in comments, then they go down and stop commenting and then later on started putting more information. There is also role discovery in terms of engagement and what they do in their community.

-Charlene Jennet (UCL): Identifying and promoting creativity – creativity is a puzzling question, which is debated in psychology with some people look for breakthrough moment, while other look at everyday creativity. There are examples of projects that led to creativity – such as foldit, in terms of everyday creativity in citizen cyberscience and conducting interviews with volunteers and results include artwork from the old weather forum or the Galaxy Zoo Peas and eyewire chatbots that were created for members. People who are engaged in the project are contributing more to the project. Providing feedback on progress is important, and alos regular communication and personal feedback in blogs and answering in tweeters. Event help and also need to have ability role management.

-Carl Lagoze (U. Michigan) Inferring participant expertise and data quality – focusing on eBird and there is a paper in big data and society. The standard way is to control the provenance of the data. The library is creating ‘porous zone’ so today there is less control over the who area. There are barriers that break down between novices and experts. How can we tell experts/non experts – this happen across areas, and it is sort of distributed sensor network with weak sensors. are there signal in the data that help you to identify people and the quality of their information.

7C Panel: Citizen Science and Disasters: The Case of OpenStreetMap – 

Robert Soden (University of Colorado, Boulder) described the GFDRR project of Open Cities to collect data for resilience planning and explained the reasons to select OpenStreetMap to use for it. Kathmandu is recognised as at risk place, and there was an aim to identify schools that are at risk, but there was a need to do the basic mapping. There was a local partnership with universities in the area. There was a challenge of figuring out data model – number of stories, usage, roof type, wall type, age. There was a need to make students to collect information that will help in modelling the risk. They produced a lot of training material. The project was successful in collecting the data and enriching the information. The process helped in creating an OpenStreetMap community out of it, and then they launched a local NGO (Kathmandu Living Labs). Trust in the data was important and there was a risk of discrediting the data – to deal with that, they involved targeted users early as well as spot check the data and done a fuller assessment of the data. They launching similar projects in Jamaica. Vietnam and Madagascar. They want to engage people in more than just data collection, and how they can be support to grow the community

Mikel Maron (Humanitarian OpenStreetMap Team) Mikel covered what is OpenStreetMap (OSM), the OSM foundation is a different entity than Wikimedia, which is confusing. OSM are a very wide community of many thousands of people that continue to contribute. Humanitarian OpenStreetMap Team (H.O.T) is following the ‘Cute Cat theory for humanitarian maps’ – use something that is alive and people are used to contribute to, when you need it in emergency situations. OSM is used in many organisation and projects in government. Attempts to map all these organisations is challenging. In Bangladesh, there are 6 OSM projects and require cooperation between agencies – at least all projects contribute to the same database. Organisations find it challenging that they need to support but can’t control. Starting from Gaza in 2009, OSM community started to map the area although there was no specific request. OSM was eventually used to create local tourist map. The community in Gaza didn’t continue – providing long term support is difficult.Haiti 2010 helped in producing the data and it was difficult to coordinate, so that led to the tasking manager. MapGive is providing support through imagery to the crowd – a way to support OSM by utilising the DigitalGlobe database. There are development of linking OSM and citizen science. There is very rich data in OSM and there is need to understand social science and data research.

8E Symposium: Ethical Dimensions of Citizen Science Research
Caren Cooper opened with a list of issues: participation vs exploitation; beneficence, maleficence, autonomy and justice; incentives vs manipulation; IP and data ownership; data misuse, sharing accessiblity; opennes vs privacy and security; cultural competence. 

Holly Menninger led yourwildlife.org – the project that she focusing on – home microbiom at home. Asking dust samples from home that volunteers share and they look at the content. Volunteers want to understand their home but also the science. There was the issue of reporting back to participants – They want to understand the information, and they provided some information and it was a challenge to translate the scientific information into something useful. People are interested in the information at home, sometime due to personal issues – e.g. request to get the results because someone is ill in the house. There is a lag of 2 years between samples and results, and it need to be explained to the participants. There is also an issue that the science is exploratory, which mean that there are no specific answers that can be answered for participants.

Madhusudan Katti explored the appropriation of citizens knowledge. In the realm of IP in traditional knowledge is discussed a lot. Appropriating local knowledge and then publishing when the information came from local knowledge through interviews – but the scientists get the fame. Collecting information about engendered species where there is risk from local community. he mentioned the film Living with elephants which focus on the conflicts between humans and elephants but that also might help poachers.

Janet Stemwedel highlighted that even participant-led citizen science can be helped with DIY science. DIY science it is self efficacy, and control the process, so if the participants running the show, than what can go wrong? Who better to protect my autonomy than me? The answer that autonomy is tricky and need good information about potential risks and benefits and your current choices can hurt future prospects for choosing freely (don’t use autonomy to get addicted, or what you do with your personal information), finally our exercise of autonomy can impact others’ prospects of free choice (DNA analysis have an impact on your wider family). Institutional Research Board (IRB) is a mechanism to think it through – potential consequence (good and bad), who could be impacted? strategies for answering the question. Reasons to resist IRB – not legally required, and the academic scientists complain about it, as well as no access to an IRB.

The reason to get over the resistance is that unintentional harm is not a good thing, also to get feedback from more eyes helped to know about tools and approach. Ethical objectivity is to go beyond just gut feeling and discuss with other people.

Anne Bowser discussed the ethics of gamification – the use of game design elements in non-game contexts (using leader boards). Old weather had an element of games, and also the floracaching as an example. There is labour/exploitation too – in games such as Civilization II is done for fun, while you learn about history. Online games are using different approaches to extract more from their users. Does contribution to science cleanse the ethical issues because it’s not for motives? crowdsourcing was critique in different ways. There are also tracking and privacy, so it also provide habits and all sort of details about the users (e.g. in foursquare) – salesforce is getting badges to encourage people to act in specific ways as employees. Ethical citizen science: treat participants as collaborators; don’t waste volunteer time; volunteers are not computers (Prestopnik & Cowston 2012). Ethical design allow participants to be aware of the implication and decide if they want gamification or not.

Lea Shanley – covering data privacy – her awareness came from working with Native American tribes, with participatory mapping. Tribes started to use participatory GIS. There were many things they wanted to map – and the participants had difference in views about sharing the data or not. Some places were careful and some was not. In disaster response, there is all the social media curation, and many people that are open data evangelist and they started sharing location of first aiders location and actually risking them. In citizen science, there is lack of attention to location – places were they recorded, and even real time information that risk physical security of participants. Face recognition is possible. Information collected by volunteer can reveal medical information that can harm people prospects. sensitive information, sacred sites location, endangered species. Toxic environments can risk volunteers. There are also issues with who interpret and manage the data. social norms and reinforcing social norms. An emerging area is security of social media – crowdsourcing teams where hacked in DARPA red balloon challenge. There can be issues with deliberate hacking to citizen science from people who don’t like it.

Dianne Quigley – Northeast Ethics Education Partnership, that came from issues of environmental and social justice to improve ethical knowledge of researchers. When researchers start with a community they start with discussion of risk/benefits and consider who is getting something out of it. Training graduate students to know how to work with communities. avoid harming – non-maleficence; also informed consent of working with communities, protecting data; justice is a way to think of linguistic diversity, respect to local knowledge, and also recruitment in a fair way in terms of representation. Data management and protocols. There is a need to learn humility – to respect the needs and practices of the community.

There are ideas to start an ethics group in the CSA and consider code of ethics or participant bill of rights. do we need to extend IRB oversight? co-created common rule? is there a value in code of ethics or will it be a dead word? The discussion explored the need bottom up projects which also need to consider the impacts and outputs, communication with the public and promising what the research will deliver, and the investment of time in citizen science by early career researchers can also impact their career prospect. These are challenges that are common in community participatory research.

9A Panel: The brave new world of citizen science: reflecting critically on notions of citizenship in citizen science

The panel is specifically reflecting on the citizenship aspects of citizen science. Citizen science is a significant phenomena, and feeling that need a critical voice within it. What is the place of the citizen in citizen science? question about governance, methodologies practices and methodologies. How does it connect to wider democratisation of knowledge?

Eugenia Rodrigues (University of Edinburgh, UK) asked: what model of citizenship it promotes? one way is to look at the demographics, but we can ask about the term – possible to use volunteer, amateur, or extended peer community (as in Post-Normal Science). The term citizen include autonomy, creativity, liberty , responsibility, having a stake and other meaning. What are the citizens doing and are we constructing a story that recognises the citizen scientists as a citizen? The story that is appearing in work in North-east of England dealing with water pollution in local woodland, where they noted that the Environment Agency was not doing things satisfactory way, so their need of their local habitat was overlooked. In this case  we have contextual/experiential knowledge and expert monitoring skills to lead to a change. Citizen science can be seen as counter expertise. We need to include – some classification are trying to control the role of the citizens, the need to control levels of participation to improve quality, do not give space for participants to exercise their citizenship fully.

Shannon Dosemagen (Public Lab) – in public lab there are specific attention to environmental monitoring and there is a need to re-imagine the role. In public lab they prefer to use civic science or community science and not citizen science because it can be controversial or different in different places. They also think of scientists and non-scientists not in a supplicant way. Consider how engage people in the whole process. Different roles play out in different ways – they want to be active about it. There are different roles within the community of public lab but it is about egalitarian approach to roles?

Esther Turnhout (Wageningen University) looking at expertise and quality control in citizen science networks for biodiversity knowledge. Biodiversity knowledge is existing in amateur naturalists and they started using the term citizen science. To conceptualise – there are complex relationships with mainstream science. Biodiversity recording been around for a long time and the data is increasing demand for decision making. What it brought with it is demand to professionalise and increase standards and quality. The validation is the complex networks of amateurs, experts, professionals and decision makers – looking at actors in the network. Validation is done in different places with different motivations – there are hierarchical network inside the naturalists groups and enforcing them with novices. The digitise data is compared with existing observation and there is reciprocity between observer and the process of collecting and organise the data. There are lots of things – butterflies, community of observers, the field guide – the process is circular. But increasingly, validation is imposed and procedural. Validation seizes to be collective and the records no longer circulate. The main concern is to keep check where the data go and belong to the observer. The citizenship dependent on not just turning the data into probabilities. There is a need to maintain control over the data.

Rick Hall (Ignite!, UK) there been different learned societies around the country – the learned societies that emerged from the 18th century, the acts of enclosures and the workhouses enslaved large groups in society. Today, we can ask about Internet barons if they are trying to do the same as mill owners. There is a cultural entitlement in the human right declaration. The current president of the Royal Society – finding things for yourself is at the very heart of science. It matter where it takes place – for example in a popup shop that allows community curiosity labs and explore questions that matter to them. Spaces in schools that young people can take ownership over their investigations. In spaces like Lab_13 are spaces to learn how to become a scientist. The issues are asking young people what people want to know know. We need spaces where citizens learn not just science but how to become scientists… We need more community and civic citizen scientists because the world need more curios minds.

Erinma Ochu (University of Manchester, UK) – as a neuroscientist she found her research that it requires empathy and stories as a way the science evolved as powerful and controlling. What happen when you bring science to the public realm? How to ensure that it is inclusive for women and minorities?

For me, the discussion highlighted that it was mostly about collective action and egalitarianism in the production of knowledge -so expertise without hierarchy.

another observer raised the issue of democratisation and what notion of political actions we would like to see within citizen science

The final keynote was from Amy Robinson EyeWire: Why Do Gamers Enjoy Mapping the Brain? demonstrating the game and how it works. Lessons from EyeWire – it’s been running for 2 years and a lot of things that were learned. The idea: if we build it, they will play – that’s not happen. Actually, carefully crafted, slowly built community – creating the tools, learning about how things are used. Media is crucial – 60% of eyewire registration came within 5 days of major media event. Major media event is in facebook, twitter and other social media – suddenly things are coming from media. Facebook page can convert viewers to participants. Media relations are an active engagement, not just waiting for journalist – share all sort of things, and funny things. Reaching out to media also require being prepared to it – and you need to cope with it and capture it. Create internal analytics to understand how the project works. Engagement is also a major issue – there is a huge drop off after two months. By creating games and missions can provide a reason to capture people’s interest. Prestige within the community can work to motivate them – changing the user handle colour can demonstrate the recognition by the project. There are also specific challenges and set their own challenges. Accuracy and efficiency – using the power players in the game to have a bigger role in the project. How do you recognise a potential power players in your game? Design of the entry page is critical – the page is minimalist and reduce the amount of information that you need to enter the system. They have created all sort of interesting collaboration such as fascinating visualisations. There is also need to take risks and see if they are going to work or not.

Abe Miller-Rushing close the conference asking people to share talks and links, as well as posters will come online. We are aiming to create a community and serve the needs. The new board chair, Greg Newman continue with some take aways from the conference which completed the conference.

Another account of the conference is available at https://wildlifesnpits.wordpress.com/2015/02/12/power-of-the-people-thoughts-from-the-first-citizen-science-association-conference/

Sense-it Light sensor Sense-it Sound
The Open University, with support from Nominet Trust and UTC Sheffield have launched  the nQuire-it.org website, which seem to have a great potential for running citizen science activities. The nQuire platform allows participants to create science inquiry ‘missions’. It is accompanied by an Android app called Sense-it that exposed all the sensors that are integrated in a smartphone and let you see what they are doing and the values that they are showing.

The process of setting up a project on the nQuire-it site is fairly quick and you can figure it out in few clicks. Then, joining the project that you’ve created on the phone is also fairly simple, and the integration with Google, Facebook and Twitter accounts mean that linking the profiles is quick. Then you can get few friends to start using it, and the Sense-it app let you collect the data and then share it with other participants in the project on the nQuire website. Then participants can comment on the data, ask questions about how it was produced and up or down vote it. All these make nQuire a very suitable place for experimentation with sensors in smartphones and prototyping citizen science activities. It also provides an option for recording geographic location, and it good to see that it’s disabled by default, so the project designer need to actively switch it on.

Thanks to invitations from UNIGIS and Edinburgh Earth Observatory / AGI Scotland, I had an opportunity to reflect on how Geographic Information Science (GIScience) can contribute to citizen science, and what citizen science can contribute to GIScience.

Despite the fact that it’s 8 years since the term Volunteers Geographic Information (VGI) was coined, I didn’t assume that all the audience is aware of how it came about or the range of sources of VGI. I also didn’t assume knowledge of citizen science, which is far less familiar term for a GIScience audience. Therefore, before going into a discussion about the relationship between the two areas, I opened with a short introduction to both, starting with VGI, and then moving to citizen science. After introduction to the two areas, I’m suggesting the relationships between them – there are types of citizen science that are overlapping VGI – biological recording and environmental observations, as well as community (or civic) science, while other types, such as volunteer thinking includes many projects that are non-geographical (think EyeWire or Galaxy Zoo).

However, I don’t just list a catalogue of VGI and citizen science activities. Personally, I found trends a useful way to make sense of what happen. I’ve learned that from the writing of Thomas Friedman, who used it in several of his books to help the reader understand where the changes that he covers came from. Trends are, of course, speculative, as it is very difficult to demonstrate causality or to be certain about the contribution of each trends to the end result. With these caveats in mind, there are several technological and societal trends that I used in the talk to explain how VGI (and the VGI element of citizen science) came from.

Of all these trends, I keep coming back to one technical and one societal that I see as critical. The removal of selective availability of GPS in May 2000 is my top technical change, as the cascading effect from it led to the deluge of good enough location data which is behind VGI and citizen science. On the societal side, it is the Flynn effect as a signifier of the educational shift in the past 50 years that explains how the ability to participate in scientific projects have increased.

In terms of the reciprocal contributions between the fields, I suggest the following:

GIScience can support citizen science by considering data quality assurance methods that are emerging in VGI, there are also plenty of Spatial Analysis methods that take into account heterogeneity and therefore useful for citizen science data. The areas of geovisualisation and human-computer interaction studies in GIS can assist in developing more effective and useful applications for citizen scientists and people who use their data. There is also plenty to do in considering semantics, ontologies, interoperability and standards. Finally, since critical GIScientists have been looking for a long time into the societal aspects of geographical technologies such as privacy, trust, inclusiveness, and empowerment, they have plenty to contribute to citizen science activities in how to do them in more participatory ways.

On the other hand, citizen science can contribute to GIScience, and especially VGI research, in several ways. First, citizen science can demonstrate longevity of VGI data sources with some projects going back hundreds of years. It provides challenging datasets in terms of their complexity, ontology, heterogeneity and size. It can bring questions about Scale and how to deal with large, medium and local activities, while merging them to a coherent dataset. It also provide opportunities for GIScientists to contribute to critical societal issues such as climate change adaptation or biodiversity loss. It provides some of the most interesting usability challenges such as tools for non-literate users, and finally, plenty of opportunities for interdisciplinary collaborations.

The slides from the talk are available below.

The last day of the BES/Sfé meeting was in the mood of celebration, so a session dedicated to celebrating citizen science was in place.  My notes from first day and the second day are in previous posts. These notes are long…

Before the session, in a symposium on tree health, Michael Pocock (CEH) presented ‘Monitoring to assess the impacts of tree diseases: integrating citizen science with professional monitoring‘. Ash die-back is important, and in the rest of Europe, (e.g. Denmark, Lithuania or Poland) there are losses of 60-90% but there was very little work done on monitoring the biodiversity impact of the disease in general. There is a clear lack of knowledge on the impacts on biodiversity in general – how suitable are existing surveys, how they can enhance? In a work that he done with Shelley Hinsley they reviewed 79 relevant studies, from volunteers to national professional survey and local studies. They tried to answer questions such as: What kind of things can be impacted? they identified all sort of impacts - trophic networks, structural, cascading, and ecosystem functions. They looked at different receptors in different contexts – from animals and plants on the receptors, to where they are located as context – woodland, or hedgerow. They found that woods are fairly well monitored, but how much professionals will continue to monitor it with budget cuts is an issue. Ecosystem function is very poorly monitored. The recommendations of the report are that current ongoing activities are suitable and maybe should be modified a bit to make them better (e.g. asking another question in a survey) – they didn’t recommend brand new surveys. The report is available here . If we want future proof monitoring that deal with the range of tree disease and other issues – we need a better ‘spine’ of monitoring work (in the report on page 5), but improve the integration of information and synthesis between survey. Co-location of monitoring site can be great, but actually, there are specific reasons for the locations of places in each scheme so it’s not easy to do so. In addition, volunteers based monitoring require investment in maintenance. He completed his talk with more general citizen science issue that we can learn from this work – the national plant monitoring scheme is to be launched in 2015, and there are some specific focused on lichens and other issues that require specialist knowledge in survey programmes like Splash. Mass participation is useful in some cases, but there is an issue how much recording effort is quantified – there is a big differentiation in ability to monitor species across the country and the ability of participants to record information. The retention of volunteers in mass projects is an issue – only 10% continue after a year. In enthusiasts recruitment you get higher numbers 20% that continue to be involved. The most exciting opportunity that he see is in  hypothesis-led citizen science, like the Concker Tree Science project.

The ‘Celebrating Citizen Science’ session was at the  final group of sessions of the conference, but was very well attended. Chaired by  Michael Pocock, who, together with Helen Roy, runs the BES Citizen Science SIG.

Romain Julliard (Muséum national d’Histoire naturelle)  provided an overview of citizen science activities in France in his talk ‘Biodiversity monitoring through citizen science: a case study from France’. The starting statement was that unskilled amateurs from the general public can provide good information. The museum have a role in monitoring biodiversity at the national – common species are good indicators, the appropriate for studying global changes and the general public is interested in ‘ordinary Nature’ – the things that we see every day. Scientists alone cannot monitor biodiversity over a big space such as a country, so citizens can help to collect data on a country scale and they are already spread across the country. The trade-offs of using citizens as observers include skills vs. numbers of participants – there are only few experts and enthusiasts. Another issue is sampling design: are you aiming for representativeness of where people are or do you send observers to specific locations to do the survey. There is a need for a simple protocol for volunteers. Much simpler than procedures in a research station professionals. They started with French Bird Breeding Survey in coordination with NGOs like LPO and others – with over 2000 squared that are being observed since 1989 and over 1000 provide long-term monitoring. Now they have skilled amateur schemes – monitoring bats, butterflies and much more. They started their programmes in 2005 with butterfly programme, pollinating insect survey from photographs (Spipoll) in 2010 and garden bird watch in 2012 among others – new programmes especially in the past 5 years . Spipoll provides a good example of the work that they are doing. Pollinators are useful to raise awareness and explain multi-factor pressures on the environment. 2014-12-12 13.14.25The are many sampling sites and thousands of flowers dwelling insects in France. They Spipoll protocol starts with 20 minutes ‘safari-photo’ which mean that you select a flower and take photos of each visiting insects. Second step is to select the best single photo for each insect that was sampled. Third step to name each insect from 630 possibilities – and they create an online tool that helps the identification. Final step – share the collection with other people. Once photos are shared, there are plenty of comments from other participants. The participants are encouraged to help each other observations and there is also expert participation in identification. By now, they have over 600 regular participants, 18,000 collections, and 155,000 photos. Many of the participants are not experts in biological recording but have interest in photography. in terms of data quality they looked for precision, repeatability (how close the process was to the protocol). The social control help in improving quality, and the representativeness can be done in explicit sampling design but also in post-study statistical analysis. Beginners tend not to follow the protocol, but other people are helping them and within 3-4 iterations, people are learning the protocol and follow it.

Helen Roy (CEH) talk (with Harding, Preston, Pocock and Roy) ‘Celebrating 50 years of the Biological Records Centre. She gave some key achievements that also appear in a booklet on the 50 years of BRC. The BRC was established in the 1960s to support volunteer recording in the UK – they have now a team of 14 permanent staff. 85 different recording schemes from flee to bees, ladybirds and many other groups. Recording schemes are running by volunteers coordinators – so support is provided by printing newsletters, publishing atlases, etc. They cover a lot of taxa – plants and animals. Over the decades, they have long-term datasets which lead to distribution atlases. Over 80m records. UK biodiversity indicators for the UK government are collected by volunteers and used in decision-making – they are now growing from 24 indicators to include pollinators and other elements. Another area of importance is biological invasions as it cost the UK over 12 billion EUR a year – and not only to look at existing species but also to look forward about the threats – and because volunteers are so knowledgeable, they contributed to horizon scanning work. Work on surveillance and monitoring extend to the general public with publicity – this way they for example got information that Raccoons are being seen in the UK. Another important aspect of BRC data is the ability to use it to understand the decline of native species – for example understanding changes in native ladybird species. Finally, the information is very important in climate change scenarios and use the information about habitats can help in interpreting data and predict future directions.

In the work of the BRC, technology is becoming an important driver – they share it through the NBN gateway, and also apps and websites such as iSpot, iRecord and other bits are helping in developing new sources of information. In summary, to deal with environmental challenges that we’re currently facing cannot be done without this information and interpretation by volunteers. She finished with a big thank you to the many volunteers recorders.

In ‘How to use data generated by general public of a citizen science program for conservation purpose’ Nathalie Machon (Muséum national d’Histoire naturelle) explored another successful French study. They see importance in preserving biodiversity in cities – regulate city climate, dealing with air pollution, contributing to public health etc. In cities, most of the biodiversity is in parks and gardens but the urban matrix is permeable to many animal species such as pollinators. The potential of connection between green spaces is important to create a network in the city. How the structure and management of cities influence biodiversity? was a research question that the programme ‘sauvages de ma rue‘ was set to explore. Since 2011 participants share information about wild-flowers in their own streets. When the programme started, they wanted people to learn to recognise species near them and collect information about the distribution of plants in their area . The protocol is fairly simple – identify street, collect data about plants in different habitats (cracks, walls) and send the information. They created  a guide to help people identify species and also created a smartphone app. Usually people start by providing data about their street, but the programme grew and now they have groups and organisations that deal with naturalist activity and they send a lot of data from many streets in the same place. The organisations can be about sustainability, schools university or nature enthusiasts. They receives 40,660 data points by 2014 which provided the basis for her analysis.

After correction, they had reliable 20,000 data points in 38 cities and 2500 pavements – they check the richness of pavements and the obvious factor is the length (of course) but in about 100m there is a levelling in terms of species. They found that the structure of the street is important – if it is only in cracks, there are less species. The richness is not correlated to population density, but in large urban area (Paris) there is a significant decline toward the centre. They also look at pollination – and found that the number of pollinators is correlated to the human density of the city but not correlated to the distance to the centre of the city, apart from the case in Paris. They also seen increase with habitat types in a pavement. In terms of cities, they discovered that Nantes, Brest and Angers are doing well. However, they are aware that there is an observer effect on the results. Observers were shown to be good as botanists. In summary, they’ve learned that insect pollinated species are easy to recognise and it’s possible to carry out such studies effectively with lightly trained volunteers.

Anne-Caroline Prévot (CESCO – Muséum nationa l’Histoire Naturelle) reviewed her research on ‘Short and long-term individual consequences of participation to citizen-science projects’ in an approach that combines environmental psychology and ecology. There is growing concern on separation between people and nature: extinction of experience (Pyle 2003, Miller 2005) or environmental generational amnesia (Kahn 2002). There is a need engagement of majority of citizens to change their approach. In the psychology field  , there is Stern influential piece from 2000 on environmentally significant behaviour, linking individual to different aspects of pro-environmental behaviour. Identifying social and personal factors . On the other hand, in citizen science programme there are multiple goals – contribute to ecological science ; educate people to acquire knowledge on biodiversity; etc. There is also potential of reconnection to nature – so the  question that she addressed “Did citizen science changed biodiversity representation and knowledge? environmental values? pratcial knowledge? skills?” (all these are based on Stern framework). She looked at the butterfly collection programme and interview 30 regular volunteers who participate every year – They found that they were confident in science, and they discovered new aspects of biodiversity through participation and change their gardening practices. This can change representation but they were environmentally concern to start with. There was no issue of group identity  with this group of volunteers. The second study looked at a programme at school (vigienature école) with 400 pupils from 29 classes in 11-13 age group. They use a questionnaire to understand environmental value and other activities outside schools. In addition, they asked the children to draw an urban garden. Each drawing was analysed for natural elements, built elements and humans. Participation in nature monitoring showed higher presence of nature in drawing but no difference in environmental values. They think that it probably changed representation, but not values, there was no assessment of skills and there was some aspect of group social identity. In summary citizen science initative may change knwoeldge and attitdue of volunteers but this require attention and more evaluation.

Rachel Pateman (SEI) presented the an MSc project carried out by Sian Lomax  under the supervision of Sarah West (SEI) on ‘A critical assessment of a citizen science project‘. It’s an assessment of the science and impact of participants from the OPAL Soil and Earthworm Survey. Aims of citizen science are to answer scientific questions, but also to provide benefit to participants – learning, fun, change behaviours, or information for lobbying on behalf of nature. The challenges are how to find inclusive methods and have good quality data. The participants aim are not simple – there is not simple link between participation and pro-environmental behaviour. The way to deal with that is to evaluate and reflect critically during the development of a citizen science project, and inform the design process (this remind me a lot of Amy Fowler’s thesis, also about OPAL). The OPAL programme is aimed to be educational, change of lifestyle and inspire new generation of environmentalists and greater understanding of the environment. Sian evaluate the soil and earthworm survey which are usually run with an instructor (community scientist) but also can be done by ordering a self obtained pack. The methods – dig a pit, identify worms, and identify properties of the soil and then submit the inforamtion. The aim is that participants wil learn about soil properties and get interested in environmental issues. Sian recruited 87 participants from ages 5 to 60 and also evaluated the observations of participants in the lab, as well as running a questionnaire with participants. She found fairly poor results  (around 40% accurate) in comparison to her own analysis. The results are that 39% identified correctly, 44% functional group, 46% identified as immature – the reliability of the data that adult observers done is better. Results – ID to species level is challenging, especially without help (she didn’t trained the participants) and therefore there is a need of an OPAL community scientist to be an instructor. There was not enough testing of the material at the beginning of the survey and it haven’t been improved since 2009. There is a need to verify records – but should be emphasised further and included in apps. However, despite these limitation, the OPAL survey did yield useful information and they managed to use the data to find abundance of information. Only in 29% of the cases she agreed with participants about the classification of soil granularity. When evaluating the pH of the soil – 63% was within the correct category of acid/alkaline but not correct on the value – the issue might be with the instrument that was provided to participants and yields wrong reading.

From @Simon_Wilcock

In terms of knowledge and experience – the questionnaire was done before, immediately after the survey and then 3 months later. Knowledge increased immediately after but drop-off after – so conclusion is that need to reinforce it after the event. In terms of interest in nature they didn’t find difference – but that because there was high level of interest to start with.

Jodey Peyton (CEH/BRC)  ‘Open Farm Sunday Pollinator Survey: Citizen science as a tool for pollinator monitoring?‘. The decline in pollinators in the UK is a cause of concern. Their estimated value is £510 m a year. The Big Bumbelebee discovery is an example for a project that focus on pollinators. However, we’re lacking abundance data about them. The Open Farm Sunday is a project to open farms to the public (run by LEAF) and about 4 years ago they contacted CEH to do some work with visitors collect information on pollinators

They ask participants to observe a 2×2 m of crop and non-crop area. They have an ecologists on site so they do the same as the participants – carry 2 min observations in both habitats. The event included teaching people the process and giving them information. The forms use to be 4 pages but turned out to be too complex so simplified a form with just 2 pages. They also reduce time from 5 min to 2 min. They run  surveys in 2012 to 2014 with different number of farms – and looked at different factors during the day. They found that public was over-recording (compare to ecologists), not by much – they also got data from other parts of the plant so not only on the flowers because they wanted to report something. Conclusions – on the broad level public data was similar to ecologists. Lots of interest and enthusiasm and understand what they’re seeing. It is great opportunity to highlight the issue of pollinator. Want to run it every second year because of the effort of the ecologists on the day. They also want to deal with challenge of ‘recording zero. Want to see more collaboration with universities and schools.

Charlotte Hall (EarhtWatch Institute) provided an overview of FreshWater Watch: lessons from a global mass Citizen Science programme. The programme focused on fresh water quality. A global programme that look at water quality in urban areas – each location they partner with local research institute, and Earthwatch bring the citizen scientists with the local researchers. The data that is collected is managed by EarthWatch on a specially designed website to allow sharing knowledge and communictation. The evolving motivation of participants, they looked at Rotman et al 2012 model. Initial involvment stemming from interest or existing knowledge, although in the case of EarthWatch they are getting employees of Shell or HSBC who sponsor them, they also work with teachers in Teach Earth and also expanding to work with local groups such as Thames 21 or Wandle Trust. They have over 20 research partners. With such a mix of researchers, participants and organisations, there are different motivations from different directions. They start with training in person and online Research and learning- EarthWatch is interested in behaviour change, so they see learning as a very important issue and include quizzes to check the knowledge of participants. They pay special attention to communication between EarthWatch and the scientists and between EarthWatch and the citizen scientists. There is a community feature on the website for citizen scientists and also for the scientists. There is also an app with automated feedback that tell them about the outcomes of the research they are doing. They have an element of gamification -points on communication, science and skills that participants gained and they can get to different levels. They try to encourage people to move to the next step so to continue their involvement through learning in webinars, refresher session, research updates, points and prizes and even facility for the participants to analyse the data themselves. Involvement in FreshWater watch is exhibiting participation inequality. 2014-12-12 14.43.10They would like to make it shallower but it is very strongly skewed. In Latin America there is better participation, and also differences in participation according to the researcher who lead the activity. This is new citizen science approach for EarthWatch, with different audience, so it’s important to re-evaluate and understand participants. EarthWatch is still learning from that and understanding motivation.

Emma Rothero (Open University) Flight of the Fritillary: a long-running citizen science project linking Snakeshead fritillaries flowers and bumblebees. The work started in 1999, this is a rare plant that is growing only in few places in the UK. The Bees are critical to the flower, and they set a 15% secondary count to evaluate the success of volunteers. They also started winter workshops for discussions. To engage volunteers, they’ve done wide advertising and also used naturalist networks. She described a comparison between three sites where monitoring was carried out this year . In Lugg Meadow the monitoring is done during guided walks and family outreach events. In North Meadow, many people come to see – so they have a gate presence and offered free lunch for volunteers. In Clattinger Farm they haven’t done any specific activity. In 2008 – 20011 only 20 volunteers, now they’ve got 90 volunteers, and about 30-40 who come to winter workshops. Level of volunteering – once 120 , 40 participated twice and 20 three times – there is some enthusiastic people who do it regularly. The volunteers survey show that 88% heard about the monitoring project by word of mouth (despite the advertising and media access), and 87.5% are already recorders – but 88% thought that they had improved their skills. and 65% said that they improve their skills. 54% would like to get involved in other aspects of the project, and 100% enjoyed the activity. In terms of comparison with recounts – they do 4000 1sq m quads using very accurate (1 cm) GPS. They see that there wasn’t difference between recounts in some sites but significantly difference in another site (because of difficulties in frame orientation so implementation of the protocol) – recognising problem in their method. There is also scientific discovery, where they found a case that plants didn’t appear one year but bounced back the next year.

There was no time for much discussion, but a question that was raised and discussed shortly is that most of the projects are ‘top-down’ and led by the scientists, so what is the scope for co-created projects in the area of ecological observations and monitoring?

 

A citizens observatory is a concept that evolved at EU policy circles, defining the combination of participatory community monitoring, technology and governance structures that are needed to monitor/observe/manage an environmental issue. About two years ago, the EU FP7 funded 5 citizens observatory projects covering areas from water management to biodiversity monitoring. A meeting at Brussels was an opportunities to review their progress and consider the wider implications of citizen science as it stand now. The meeting was organised and coordinated by the group in the Directorate General Research and Innovation that is responsible for Earth Observations (hence the observatory concept!).  The following are my notes from the meeting.

They are very long and I’m sure that they are incoherent at places! 

From Commons Lab The meeting was opened with Kurt Vandenberghe (Director Environment, DG R&I). He suggested that citizens observatories contribute to transparency in governance – for example, ensuring that monitoring is done in the correct place, and not, as done in some member states, where monitoring stations are in the places that will yield ‘useful’ or ‘acceptable’ results but not representative: “Transparency is a driver in intrinsic ethical behaviour”. There is also value in having citizens’ input complementing satellite data. It can help in engaging the public in co-design of environmental applications and addressing environmental challenges. Examples for such participation is provided in Marine LitterWatch and NoiseWatch from EEA and development of apps and technology can lead to new business opportunities. The concept of earth observations is about creating a movement of earth observers who collect information, but also allow citizens to participate in environmental decision-making. This can lead to societal innovation towards sustainable and smart society. From the point of view of the commission DG R&I, they are planning to invest political and financial capital in developing this vision of observatories. The New calls for citizens observatories demonstrators is focusing on citizens’ participation in monitoring land use and land cover in rural and remote areas. Data collected through observatories should be complementing those that are coming from other sources. The commission aim to continue the investment in future years – citizen science is seen as both business opportunities and societal values. A successful set of project that end by showing that citizen observatories are possible is not enough – they want to see the creation of mass movement. Aim to see maximising capital through the citizens observatories. Optimising framework condition to allow citizens observatories to be taken up by member states and extended, implemented and flourish. Some of the open questions include how to provide access to the data to those that collected it? How can we ensure that we reach out across society to new groups that are not currently involved in monitoring activities? How can we deal with citizens observatories security and privacy issues regarding the information? The day is an opportunity for co-creation and considering new ways to explore how to address the issue of citizens observatories from a cross-disciplinary perspective – “Citizen science as a new way to manage the global commons”.

Next, a quick set of presentations of the FP7 projects:

WeSenseIt (Fabio Ciravegna) is a project that focuses on citizens involvement in water resources – citizens have a new role in the information chain of water related decisions. Participants are expected to become part of the decision-making. In this project, citizens observatory is seen as a science method, an environment to implement collaboration and as infrastructure. They are working in Doncaster (UK), Vicenza (Italy) and Delft (The Netherlands). In WeSenseIt, they recognise that different cultures and different ways to do things are part of such systems. A major questions is – who are the citizens? In the UK : normal people and in Italy: civil protection officials and volunteers, while in the Netherlands water and flood management is highly structured and organised activity. They have used a participatory design approach and working on the issue of governance and understanding how the citizen observatories should be embedded in the existing culture and processes. They are creating a citizens’ portal and another one for decision makers. The role of citizens portal is to assist with data acquisition with areas and equipment citizens can deploy – weather, soil moisture,etc. On the decision makers portals, there is the possibility is to provide surveillance information (with low-cost cameras etc), opportunistic sensing and participatory sensing – e.g. smart umbrella while combining all this information to be used together. WeSenseIt created a hybrid network that is aimed to provide information to decision makers and citizens. After two years, they can demonstrate that their approach can work: In Vicenza they used the framework to develop action to deal with flood preparedness. They also started to work with large events to assist in the organisation and support the control room, so in Torino they are also starting to get involved in helping running an event with up to 2m people.

Omniscientis (Philippe Ledent)  – The Omniscientis project (which ended in September) focused on odour monitoring and using different sensors – human and electronic. Odour can be a strong / severe nuisance, in Wallonia and France, and there is concerns about motorways, factories, livestock and waste facilities. Odour is difficult to measure and quantify and complex to identify. Mainly because it is about human perception, not only the measurement of chemicals in the air. In too many regulations and discussions about odour, citizens were considered as passive or victims. The Omniscientis project provided an opportunity to participants be active in the monitoring. The project took a multi-stakeholders  approach (farmers, factory operators, local residents etc.). They created odour management information system with the concept of a living lab. They created a OdoMIS that combines information from sensors, industry, NGOs, experts, and citizens. They created an app OdoMap that provide opportunities for participants to provide observations, but also see what other people measured and access to further information. They created chemical sensor array (e-nose), and the citizens helped in assessing what is the concentration that they sense. This was linked to a computationally intensive dispersion model. They have done a pilot around a pig farm in Austria to validate the model, and another near pulp and paper mill. Evolution of citizens participation was important for the project, and people collected measurements for almost a year, with over 5000 measurements. The results is they would like to link odour sources, citizens and authorities to work on the area. They have used actor netowrk theory to enrol participants in the process with strong UCD element.

COBWEB (Chris Higgins) has been working a generic crowdsourcing infrastructure, with data that can supports policy formation while addressing data quality issues and using open standards. They aimed to encapsulate metadata and OGC standards to ensure that the ifnroamtion is interoperable. They would like to create a toolkit can be used in different contexts and scenarios. They focus on the biospehere reserve network across Europe. They carried out a lot of co-design activities from the start with stakeholders engagement, they are doing co-design with 7 organisations in Wales – Woodlands trusts, RSPB, Snowdonia national park, and others. This lead to different focus and interest from each organisation – from dolphins to birds. They hope to see greater buy-in because of that.

Citi-Sense (Alena Bartonova) focusing on air quality. The objectives of city sense is to explore if people can participate in environmental governance. They are doing empowerment initiatives – urban quality, schools, and public spaces. In the urban context they measure pollution, meteorological observations, noise, health, biomarkers and UV exposure – they looked at technologies from mobile sensors and also static sensors that can be compared to compliance monitoring. In schools, they engage the school children, with looking at sensors that are installed at school and also looking at indoor air quality data. There are co-design activities with students. In Public spaces they focused on acoustic sensing, and discover that phones are not suitable so went to external sensors (we discovered the problem with phones in EveryAware). They explore in 9 cities and focusing from sensors, data and services platform but also explore how to engage people in a meaningful way. The first two years focused on technical aspects. They are now moving to look at the engagement part much more but they need to consider how to put it out. They are developing apps and also considering how to improve air quality apps. They would like a sustainable infrastructure.

Citclops (Luigi Ceccaroni) originally aimed ‘to create a community participatory governance methods aided by social media streams’, but this is an unclear goal that the project partners found confusing! So they are dealing with the issue of marine environment: asking people to take pictures of marine environment and through the app facilitating  visual monitoring of marine environment (available to download by anyone) – they are helping people to assess visually the quality of water bodies. There is an official way of defining the colour of sea waters which they use in the project and also comparing ground observations with satellite information. The project included the design of DIY devices to allow the measurement of water opacity. Finally, exploring water fluorescence. They design and 3D printed a device that can be used with smartphones to measure  fluorescence as this help to understand concentration of chlorophyll and can be associated with remote sensing information. Citizen science is a way to complement official data – such as the data from the water directive.

After a break and demonstration from some of the projects, the first round-table of the day, which include executives from environment protection agencies across Europe started

From @ScotlandEuropa strategic views on Citizens Observatories

[I’ve lost my notes, so below is a summary of the session edited from Valentine Seymour notes]

The chair (Gilles Ollier) of the session highlighted that the following issues as significant for considering the role of citizen science: Are we doing something useful/usable? Valuable? And sustainable?
James Curran (Scottish Environmental Protection Agency) noted that SEPA took citizen science to the core of its business. He highlighted issues of growth, jobs and investments. The need for sustainable growth and that citizen science contributed to these goals very well as the Chinese proverb say “Involve me and I will understand”. SEPA has been promoting mobile applications to detect invasive species and environmental damages. The Riverfly project is an example of engaging people in monitoring to detect water quality and invertebrate sampling and how important it was for the Water Framework Directive (WFD) to include public participation. There is a need to provide accessible information, working with others collaboratively, measuring behavioural changes and the need for public engagement.

Laura Burke (Ireland EPA) main statement was that citizen science do not replace governmental and official scientific monitoring but that citizen science should be seen in complimentary. There are three main issues or areas to consider; terminology (spectrum of the term citizen science), the need for thinking about the long-term sustainable future of citizen science projects, and acknowledge the synergies between projects.

Hugo de Groof (DG Env) noted the importance of access to information and the Open Access Directive that has been passed.  In terms of governance, we need to follow 5 main principles: 1) Accountability, 2) transparency, 3) participation, 4) Effectiveness and efficiency and finally 5) Respect. Raymond Feron from the Dutch ministry for infrastructure and environment emphasised that there is a social change emerging. [End of Valentine’s notes]

The issues of operationalisation received attention – there are different projects, how far are we from large-scale deployment? Colin Chapman (Welsh Government) – maturity across observatory projects vary from case to case and across issues. Technologies are still maturing, there is a need to respond to issues and mobilise resources to address issues that citizens bring up. Systems approach to ecosystem management is also a factor in considering how to integrate observatories. There are too much reliance on macro modelling. A question for policy bodies is “can we incentivise citizens to collect data across policy areas?” for example invasive species, we can use the information in different areas from flood modelling to biodiversity management. David Stanners (EEA) noted that citizens observatories are vulnerable at this point in time and this lack of stability  and there are examples of projects that didn’t last. There are some inter-linkages, but not an ecology of observatories, of interconnectedness and ability to survive. Need better linkage with policy, but not across the board and no direct policy elements. The integration of citizens observatories is a fantastic opportunity at EU level – as issues of the environment suppose to be very visible. Raymond Feron noted that government might have issues in keeping pace with citizens actions. Government organisations need to learn how to integrate citizens observatories, need to learn to reuse parts. Integrate research programme with implementation strategy. James Curran also stated that working with anglers and other stakeholders can increase trust. In terms of quality and relevant, citizen science data is not different to other data. Laura Burke noted that no government have all the answers, and trust issues should be presented as such. Need to move away from concept of one organisation with a solution to any given problem. David Stanners raised the issues of truth seeking. Within the cupernicos programme, there are opportunities to support services with citizen science.

Following the point of views from the panellists, questions about trust, finding ways to include of people without access to technology were raised by the audience. The panellists agreed that from the point of view of policy makes the concept of citizens observatories is obvious but there is a need to make citizens observatories and citizen science activities sustainable and well-integrated in government activities. Interestingly, James Curran noted that the issue of data quality from citizen science is not a major obstacles, inherently because environmental authorities are used to make decisions that are risk based. There was willingness to work with intermediaries to reach out to under-represented groups. David Stanners called for  cross cutting meta-studies to understand citizens observations landscape.

The next series of presentations covered citizen science activities that are not part of the citizens observatories projects.

NoiseWatch/Marine litter watch (David Stanners, EEA) – Noisewatch was developed by the EEA and provie the modelling element, measurement, and citizen rating element. He argued that dB is not good measure, as noise is a perception issue and not about just measurement. NoiseWatch received an award in the Geospatial World Forum. It became global although it wasn’t promoted as such, with uptake in India and China and UNEP are considering to take it over and maintain it. Sustainability of NoiseWatch is a challenge for EEA and it might be more suitable in a global platform such as UNEP Live. NoiseWatch is seen as complementing existing monitoring stations because there as so few of them. When analysing the sources of the measurement, NoiseWatch get a lot of observations from roads, with 21% of industry noise – in total almost 195000 measurements. Another application is Marine LitterWatch which provides a way for people to share information about the state of beaches. The application is more complex as it embedded in protocol of data collection, and David argue that it is ‘more close to citizen science’, EEA got almost 7500 measurements with 144 events to use it, they are developing it further.

LakeWiki (Juhani Kettunen, who was not present) is an initiative that focus on motoring Finnish lakes – was launched by Syke and it is aimed to allow local communities to take care of their lakes, record information and build a long term observations. Simple platform, recording information such as ice break up but it is aimed to allow locals write about the lake, maintain observations sites, upload pictures, announce local events and write in discussion forums, 1400 sites [this project is also noted in COST Energic network]

Raymond Feron presented a programme in Netherlands called  digital Delta Initiative: partnership between research, public and government. IBM, TU Delft and government are involved. Trying to make water data available to everyone. focus of the system allow re-use of information, the government try to do things more efficiently, shorten time to market, improve quality of decisions, while also improving citizen participation. Ideas of increasing export to new places. Involving the public with dyke monitoring because they can do things locally easily.

I gave a talk about Mapping for Change air quality studies, and I hope to discuss them in a different post:

Claudia Goebel followed with a report on ECSA (see my report for ECSA meeting)

Antonoi Parodi from CIMA foundation discussed the DRIHM project. This is mostly a project focused on meteorological information. Issue of meteorology has a very long history of observations, going from 300 BC. There is plenty of reliance of observed patterns of events. Informal folklore was used by early meteorology citizen science. The middle ages, there are examples of getting information to deal with flash flood. Within the project they created a volunteer thinking platform to support classifications of thunderstorms. The Cb-TRAM monitoring observations of thunderstorms. Interestingly, a follow on question explored the link between extreme events (floods last year) and the role of the research project to provide relevant information.

The Socientize project was presented by Francisco Sanz, covering areas of digital science.

There was also a presentation from the SciCafe 2.0 project, including mentioning the European Observatory for Crowd-Sourcing . Another tool from the project is Citizens’ Say tool  

The final panel explored issues on the challenges of citizen science (I was part of this panel). The people on the panel were Jaume Piera (CITCLOPS),;Arne Berre (CITI-SENSE); Bart De Lathouwer (COBWEB); Philippe Valoggia (OMNISCIENTIS); Uta Wehn (WeSenseIt); Susanne Lützenkirchen, City of Oslo and myself.

Susanne noted that the city of Oslo developed some apps, such as safe for schools – people can experience their routes to schools and they are interested in more citizen science and citizen observatories.

Strategy for sustainability of engagement over time – Uta noted that the co-design process is very important and governance analysis to understand the processes and the local needs (in WeSenseIt). The observatories need to consider who are the partners – authorities are critical to see the value of observatories and provide feedback. Jaime suggested – identifying points in the project that give participants feeling that they are part of the process, allowing people to participate in different ways. Making people aware that they are part of the activities and they are valued. Showing the need for long-term observations. Susanne pointed that in Oslo there isn’t any simple answer – the issue of who are the citizens and in others it is a specific groups or more complex design sometime need to think who chose participants and how representative they are.

In WeSenseIT, they have privacy and consent setting – adhering to rules of social media, and it is an issue of data that came from other sources and how it is going to be reused. In general, Uta noted that WeSenseIt would like to try and make the data open as possible.

Data preservation is an issue – how data was handled, if we assume that there are probably 500 projects or more in Europe which is Max Craglia (JRC, who chaired the session) estimation. The issues of citizen observatories, we need to consider the individual data and there is sometime concern about releasing unvalidated data. Bart pointed that Cobweb is taking care of privacy and security of data and they are storing information about observers and there are privacy rules. Privacy legislation are local and need to follow the information. citizens see the benefit in what they collected and the sustainability of commitment. It is important to work with existing social structures and that provide opportunity for empowerment. Views about ownership of data were raised.

In terms of integration and synergy or interoperability of the citizen centred projects – interoperability is critical topic, the data need to be standardised and deal with the metadata (the most boring topic in the world). It should be collected at the right level. There is good foundation in GEOS and OGC, so we can consider how to do it.

What is the role of scientists? the role of scientists – there are partners who focus on dealing with the data and augment it with additional information and there is a role of managing the data. The link to policy also require an understanding of uncertainty. The discourse of science-policy is about what is considered as evidence. There is embracing of citizen science in environment agencies (which was demonstrated in the first panel), but there is a need for honest discussion about what happen to the data, and what degree citizens can participate in decision-making. Relevancy, legitimacy are critical to the understanding.

There was also call for accepting the uncertainty in the data – which is integral part of citizen science data. David Stanners emphasised the need for legitimacy of the information that is coming from citizens observatories as part of the trust that people put in contributing to them.

The final comments came from Andrea Tilche (Head of Unit Climate Actions and Earth Observation, DG R&I). The commission recognise that citizen observatories are not a replacement for institutional monitoring scheme (although he mentioned maybe in the future). The potential of engaging users is tremendous, and the conference demonstrated the energy and scale of activities that can be included in this area . The ownership of information need to be taken into account. We need to link and close the gaps with scientists and policy makers. We need to create market around the observatories – can’t only do it through project that disappear. There is a need for market of citizen observatories and business models. In the new call, they want to see the project generate and credible business processes. Citizens observatories will need demonstrate raising funding from other sources.

If you have been reading the literature on citizen science, you must have noticed that many papers that describe citizen science start with an historical narrative, something along the lines of:

As Silvertown (2009) noted, until the late 19th century, science was mainly developed by people who had additional sources of employment that allowed them to spend time on data collection and analysis. Famously, Charles Darwin joined the Beagle voyage, not as a professional naturalist but as a companion to Captain FitzRoy[*]. Thus, in that era, almost all science was citizen science albeit mostly by affluent gentlemen and gentlewomen scientists[**]. While the first professional scientist is likely to be Robert Hooke, who was paid to work on scientific studies in the 17th century, the major growth in the professionalisation of scientists was mostly in the latter part of the 19th and throughout the 20th century.
Even with the rise of the professional scientist, the role of volunteers has not disappeared, especially in areas such as archaeology, where it is common for enthusiasts to join excavations, or in natural science and ecology, where they collect and send samples and observations to national repositories. These activities include the Christmas Bird Watch that has been ongoing since 1900 and the British Trust for Ornithology Survey, which has collected over 31 million records since its establishment in 1932 (Silvertown 2009). Astronomy is another area in which amateurs and volunteers have been on a par with professionals when observation of the night sky and the identification of galaxies, comets and asteroids are considered (BBC 2006). Finally, meteorological observations have also relied on volunteers since the early start of systematic measurements of temperature, precipitation or extreme weather events (WMO 2001). (Haklay 2013 emphasis added)

The general messages of this historical narrative are: first, citizen science is a legitimate part of scientific practice as it was always there, we just ignored it for 50+ years; second, that some citizen science is exactly as it was – continuous participation in ecological monitoring or astronomical observations, only that now we use smartphones or the Met Office WOW website and not pen, paper and postcards.

The second aspect of this argument is one that I was wondering about as I was writing a version of the historical narrative for a new report. This was done within a discussion on how the educational and technological transitions over the past century reshaped citizen science. I have argued that the demographic and educational transition in many parts of the world, and especially the rapid growth in the percentage and absolute numbers of people with higher education degrees who are potential participants is highly significant in explaining the popularity of citizen science. To demonstrate that this is a large scale and consistent change, I used the evidence of Flynn effect, which is the rapid increase in IQ test scores across the world during the 20th century.

However, while looking at the issue recently, I came across Jim Flynn TED talk ‘Why our IQ levels are higher than our grandparents (below). At 3:55, he raise a very interesting point, which also appears in his 2007 What is Intelligence? on pages 24-26. Inherently, Flynn argues that the use of cognitive skills have changed dramatically over the last century, from thinking that put connections to concrete relationship with everyday life as the main way of understanding the world, to one that emphasise scientific categories and abstractions. He use an example of a study from the early 20th Century, in which participants where asked about commonalities between fish and birds. He highlights that it was not the case that in the ‘pre-scientific’ worldview people didn’t know that both are animals, but more the case that this categorisation was not helpful to deal with concrete problems and therefore not common sense. Today, with scientific world view, categorisation such as ‘these are animals’ come first.

This point of view have implications to the way we interpret and understand the historical narrative. If correct, than the people who participate in William Whewell tide measurement work (see Caren Cooper blogpost about it), cannot be expected to think about contribution to science, but could systematically observed concrete events in their area. While Whewell view of participants as ‘subordinate labourers’ is still elitist and class based, it is somewhat understandable.  Moreover, when talking about projects that can show continuity over the 20th Century – such as Christmas Bird Count or phenology projects – we have to consider the option that an the worldview of the person that done that in 1910 was ‘how many birds there are in my area?’ while in 2010 the framing is ‘in order to understand the impact of climate change, we need to watch out for bird migration patterns’. Maybe we can explore in historical material to check for this change in framing? I hope that projects such as Constructing Scientific Communities which looks at citizen science in the 19th and 21th century will shed light on such differences.


[*] Later I found that this is not such a simple fact – see van Wyhe 2013 “My appointment received the sanction of the Admiralty”: Why Charles Darwin really was the naturalist on HMS Beagle

[**] And we shouldn’t forget that this was to the exclusion of people such as Mary Anning

 

Follow

Get every new post delivered to your Inbox.

Join 2,863 other followers