The Potential of Volunteered Geographic Information (VGI) in Future Transport Systems

dsc01541An aspect of collaborative projects is that they start slowly, and as they become effective and productive, they reached their end! The COST Energic (European Network for Research into Geographic Information Crowdsourcing) led to many useful activities, with some of them leading to academic papers. From COST Energic, we’ve got the European Handbook on Crowdsourced Geographic Information, a paper on VGI quality assessment methods, and more.

One outcome came out from the close collaboration around the summer schools that were organised by the network. Prof Cristina Capineri was the chair of the COST network, and also the organiser of summer schools in Fiesole, near Florence. Prof Maria Attard organised the other summer school of the action, at the University of Malta. Based on our close working relationships (though Maria and I know each other since our PhD studies in CASA) we started working on a joint paper. Maria specialises in transport geography, so the support from COST Energic was a reason to consider how VGI will play out in future transport systems. The paper was published in the journal Urban Planning and the abstract reads:

“As transport systems are pushed to the limits in many cities, governments have tried to resolve problems of traffic and congestion by increasing capacity. Miller (2013) contends the need to identify new capabilities (instead of capacity) of the transport infrastructure in order to increase efficiency without extending the physical infrastructure. Kenyon and Lyons (2003) identified integrated traveller information as a facilitator for better transport decisions. Today, with further developments in the use of geographic information systems (GIS) and a greater disposition by the public to provide volunteered geographic information (VGI), the potential of information is not only integrated across modes but also user-generated, real-time and available on smartphones anywhere. This geographic information plays today an important role in sectors such as politics, businesses and entertainment, and presumably this would extend to transport in revealing people’s preferences for mobility and therefore be useful for decision-making. The widespread availability of networks and smartphones offer new opportunities supported by apps and crowdsourcing through social media such as the successful traffic and navigation app Waze, car sharing programmes such as Zipcar, and ride sharing systems such as Uber. This study aims to develop insights into the potential of governments to use voluntary (crowdsourced) geographic information effectively to achieve sustainable mobility. A review of the literature and existing technology informs this article. Further research into this area is identified and presented at the end of the paper.”

The paper is open, and can be found here

New paper: Associations for Citizen Science: Regional Knowledge, Global Collaboration

When the new journal about Citizen Science established, one of the articles that the editorial team thought should be included is a paper that describe the development of associations dedicated to the practice of citizen science. There are now several of these: the Citizen Science Association (CSA), the European Citizen Science Association (ECSA), and the Australian Citizen Science Association (ACSA).

Following the Citizen Science 2015 conference, under the guidance of Martin Storksdieck, a Professor at the College of Education and School of Public Policy in 
Oregon State University, we set out to write the paper. The end results is a paper that discusses the need for organisations that deal with citizen science and the specific directions that each organisation adopted in order to address the local social, political, and scientific situation in which it evolved.

The abstract read: “Since 2012, three organizations advancing the work of citizen science practitioners have arisen in different regions: The primarily US-based but globally open Citizen Science Association (CSA), the European Citizen Science Association (ECSA), and the Australian Citizen Science Association (ACSA). These associations are moving rapidly to establish themselves and to develop inter-association collaborations. We consider the factors driving this emergence and the significance of this trend for citizen science as a field of practice, as an area of scholarship, and for the culture of scientific research itself.”

Here is the paper itself Storksdieck, M. et al., (2016). Associations for Citizen Science: Regional Knowledge, Global Collaboration. Citizen Science: Theory and Practice.. 1(2), p.10. DOI: http://doi.org/10.5334/cstp.55

Leveraging the power of place in citizen science for effective conservation decision making – new paper

During the Citizen Science conference in 2015, a group of us, under the enthusiastic encouragement of John Gallo started talking about a paper that will discuss the power of place in citizen science. John provides a very detailed account about the way that a discussion and inspiration during the conference led to the development of the paper. Greg Newman took the lead on the process of writing, and the core analysis was based on classifying and analysing 134 citizen science projects.

My contribution to the paper is mostly in exploration of the concept of place including the interpretation within Human Geography of places as spaces of flows (so the paper cites Doreen Massey). I was also involved in various discussion about the development of the dimensions of place that were included in the analysis, while most of the work was done by Greg Newman, Bridie McGreavy  & Marc Chandler.

The paper is now out and free to read and reuse.

Place-based citizen science framework (a) before and (b) after leveraging the power of place. Note that after leveraging the power of place, the citizen science circle is enlarged to reflect a potential increase in participation, data collection, and quality of conservation decision making and that the overall influence of decision making also grew. Note also that the relative size of Zone One increased while the inherent capacity of the power of place remained the same size.
Place-based citizen science framework (a) before and (b) after leveraging the power of place. Note that after leveraging the power of place, the citizen science circle is enlarged to reflect a potential increase in participation, data collection, and quality of conservation decision making and that the overall influence of decision making also grew. Note also that the relative size of Zone One increased while the inherent capacity of the power of place remained the same size.

 

 

 

 

 

 

 

While it is, for me, expected that place will have an important role in citizen science, it is excellent to see that the analysis supported this observation through consistent classification of citizen science projects across three collections. The model above suggest how it can be used.

The paper development process, however, demonstrate the power of cyberspace, as the team met regularly online and shared documents, details and drafts along the way, with important regular online meeting that help it to come together. The paper started with all of us at the same place and at the same time, but this interaction was enough to sustain our team work all the way to publication.

The paper is open access and the abstract for it is:

Many citizen science projects are place-based – built on in-person participation and motivated by local conservation. When done thoughtfully, this approach to citizen science can transform humans and their environment. Despite such possibilities, many projects struggle to meet decision-maker needs, generate useful data to inform decisions, and improve social-ecological resilience. Here, we define leveraging the ‘power of place’ in citizen science, and posit that doing this improves conservation decision making, increases participation, and improves community resilience. First, we explore ‘place’ and identify five place dimensions: social-ecological, narrative and name-based, knowledge-based, emotional and affective, and performative. We then thematically analyze 134 case studies drawn from CitSci.org (n = 39), The Stewardship Network New England (TSN-NE; n = 39), and Earthwatch (n = 56) regarding: (1) use of place dimensions in materials (as one indication of leveraging the power of place), (2) intent for use of data in decision-making, and (3) evidence of such use. We find that 89% of projects intend for data to be used, 46% demonstrate no evidence of use, and 54% provide some evidence of use. Moreover, projects used in decision making leverage more (t = − 4.8, df = 117; p < 0.001) place dimensions (View the MathML source= 3.0; s = 1.4) than those not used in decision making (View the MathML source= 1.8; s = 1.2). Further, a Principal Components Analysis identifies three related components (aesthetic, narrative and name-based, and social-ecological). Given these findings, we present a framework for leveraging place in citizen science projects and platforms, and recommend approaches to better impart intended outcomes. We discuss place in citizen science related to relevance, participation, resilience, and scalability and conclude that effective decision making as a means towards more resilient and sustainable communities can be strengthened by leveraging the power of place in citizen science.

Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour

One of the facts about academic funding and outputs (that is, academic publications), is that there isn’t a simple relationship between the amount of funding and the number, size, or quality of outputs. One of the things that I have noticed over the years is that a fairly limited amount (about £4000-£10,000) are disproportionately effective. I guess that the reason for it is that on the one hand, it allow a specific period of dedicated time, but the short period focuses the mind on a specific task.

A case in point is the funding through the UCL Grand Challenges Small Grants programme. In 2014, together with Dr Elizabeth Boakes and Gianfranco Gliozzo, I secured funding for a short project on ‘Using citizen science data to assess the impact of biodiversity on human wellbeing‘. We have enlisted other people to work with us, and this has led the analysis of citizen science contributions across London. On the basis of this work, and in collaboration with researchers in ExCiteS (Gianfranco Gliozzo, Valentine Seymour), GiGL (Chloe Smith), Biological Records Centre (David Roy), and the Open University (Martin C. Harvey), we have developed a paper that is now published in Scientific Reports. The paper experienced a rejection and subsequent improvements along the way, which have made its analysis more robust and clear. Lizzie’s perseverance with the peer reviews challenges was critical in getting the paper published.

At the core of the paper is examination of the information from citizen science projects, and using this information to understand the behaviour of the volunteers, and what we can learn from this about biodiversity citizen science projects in general.

The paper full citation is: Boakes, E., Gliozzo, G., Seymour, V., Harvey, M.C., Roy, D.B., Smith, C., and Haklay, M., 2016, Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour, Scientific Reports

The abstract of the paper reads:

Citizen science has become a well-established method of biological recording but the opportunistic nature of biodiversity data gathered in this way means that they will likely contain taxonomic, spatial and temporal biases. Although many of these biases can be accounted for within statistical models, they are usually seen in a negative light since they add uncertainty to biodiversity estimates. However, they also give valuable information regarding volunteers’ recording behaviour, thus providing a way to enhance the fit between volunteers’ interests and the needs of scientific projects. Using Greater London as a case-study we examined the composition of three citizen science datasets – Greenspace Information for Greater London (GiGL), iSpot and iRecord – with respect to recorder contribution and spatial and taxonomic biases. We found each dataset to have its own taxonomic and spatial signature suggesting that volunteers’ personal motivations for recording may attract them towards particular schemes although there were also patterns common to all three recording systems. We found most volunteers contribute only a few records and are active for one day only. Our analyses indicate that species’ abundance and ease of identification of birds and flowering plants are positively associated with number of records, as was plant height. We found clear hotspots of recording activity, blue space (waterbodies) being associated with birding hotspots. We note that biases are accrued as part of the recording process (e.g. species’ detectability, media coverage) as well as from volunteer preferences.

Published: Why is Participation Inequality Important?

bookcoverI’ve mentioned the European Handbook for Crowdsourced Geographic Information in the last post, and explained how it came about. My contribution to the book is a chapter titled ‘Why is Participation Inequality Important?. The issue of participation inequality, also known as the 90:9:1 rule, or skewed contribution, has captured my interest for a while now. I have also explored it in my talk at the ECSA conference on ‘participatory [citizen] science‘ and elsewhere.

In this fairly short chapter what I am trying to communicate is that while we know that participation inequality is happening and part of crowdsourced information, we need to consider how it influences issues such as data quality, and think how it come about. I am trying to make suggest how we ended with skewed contributions – after all, at the beginnings of most projects, everyone are at the same level – zero contribution, and then participation inequality emerge.

I have used the iconic graph of contribution to OpenStreetMap that Harry Wood created, but the chapter is discussing other projects and activities where you can come across this phenomena.

Here is a direct link to the chapter, and I’ll be very happy to hear comments about it!

 

New book: European Handbook of Crowdsourced Geographic Information

COST EnergicCOST ENERGIC is a network of researchers across Europe (and beyond) that are interested in research crowdsourced geographic information, also known as Volunteered Geographic Information (VGI). The acronym stands for ‘Co-Operation in Science & Technology’ (COST) through ‘European Network Researching Geographic Information Crowdsourcing’ (ENREGIC). I have written about this programme before, through events such as twitter chats, meetings, summer schools and publications. We started our activities in December 2012, and now, 4 years later, the funding is coming to an end.

bookcoverOne of the major outcomes of the COST ENERGIC network is an edited book that is dedicated to the research on VGI, and we have decided that following the openness of the field, in which many researchers use open sources to analyse locations, places, and movement, we should have the publication as open access – free to download and reuse. To achieve that, we’ve approached Ubiquity Press, who specialise in open access academic publishing, and set a process of organising the writing of short and accessible chapters from across the spectrum of research interests and topics that are covered by members of the network. Dr Haosheng Huang (TU Wien) volunteered to assist with the editing and management of the process. The chapters then went through internal peer review, and another cycle of peer review following Ubiquity Press own process, so it is thoroughly checked!

The book includes 31 chapters with relevant information about application of VGI and citizen science, management of data, examples of projects, and high level concepts in this area.

The book is now available for download hereHere is the description of the book:

This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives.
The Handbook is organized in five parts, addressing the fundamental questions:

  • What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?
  • What methods might be used to validate such information?
  • Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices?
  • What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy?
  • How do VGI and crowdsourcing enable innovation applications to benefit human society?

Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development.
The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research

 

New paper: Usability and interaction dimensions of participatory noise and ecological monitoring

The EveryAware book provided an opportunity to communicate the results of a research that Dr Charlene Jennett led, together with two Masters students: Joanne (Jo) Summerfield and Eleonora (Nora) Cognetti, with me as an additional advisor. The research was linked to the EveryAware, since Nora explored the user experience of WideNoise, the citizen science noise monitoring app that was used in the project. There is also a link to the Citizen Cyberlab project, since Jo was looking at the field experience in ecological observation, and in particular during a BioBlitz. The chapter provides a Human-Computer Interaction (HCI) perspective to the way technology is used in citizen science projects. You can download the paper here and the proper citation for the chapter is:

Jennett, C., Cognetti, E., Summerfield, J. and Haklay, M. 2017. Usability and interaction dimensions of participatory noise and ecological monitoring. In Loreto, V., Haklay, M., Hotho, A., Servedio, V.C.P, Stumme, G., Theunis, J., Tria, F. (eds.) Participatory Sensing, Opinions and Collective Awareness. Springer. pp.201-212.

The official version of the paper is on Springer site here.