Citizen Science @ Computational Foundry, Swansea, Festival of Ideas

DSC_1715.JPG
The Computational Foundry at the Swansea University organised two days “Festival of Ideas” as part of the activities to celebrate its opening. The first day was organised by Ben Shneiderman and focused on aspects of AI, while the second day, curated by Jenny Preece, focused on citizen science. The summary here is from the second day, which was open by Alan Dix, the Foundry director explaining that citizen science is providing new ways of understanding the social impact of data and technologies.

DSC_1716.JPGSetting the Scene: New Agendas, Broader Impacts (Professor Jenny Preece, University of Maryland).  The Computational Foundry considering how to integrate citizen science. There are opportunities for those who are coming from the science side, and the computational side – but there are tremendous opportunities for those in citizen science and Human-Computer Interaction in the field of citizen science. This is a day of action – a range of speakers on citizen science, from doing face to face – in the estuary and the field; but also an online platform on a large scale – the Zooniverse. We see also citizen science in an overseas environment, and in the context of education and public participation in science.

Jenny’s journey to citizen science came from interaction design and information studies. The aim is for interactions – new agendas research, practice, managing a local project. The broader impact – making an impact here in Swansea, but also on the wider world. We might develop a report of these new agendas and impacts. The aim is to develop a report for CSTP. Her personal journey – love the environment, and keen birders – and when NSF put out a call about social computing, she saw an opportunity to get into this area. Citizen science has a very long history within science but not within computing. In 2009, citizen science was defined by Rick Bonney and Jonathan Silvertown in papers at the time, which mostly about a partnership between scientists and volunteers to collect and analyse data. This has now shifted to a wider definition – from setting questions to producing output, and this wider understanding of citizen science is important to the way it is thought off. The work that she’s been doing recently, include small, place-based projects in NatureNet: technology for community environmental learning – see the video at videohall.com/p/963 and a paper in PNAS 2019. The project is addressing crowdsourcing – what are the special computational there? You are not using ML, drones, AI or any of this. The idea of crowdsourcing the design – that was something that made it different in terms of the NSF way to fund it. When started, the aim was to suggest design ideas of the things that they like and what they want to change. Very few design ideas came forward on a website that was set to allow participants, but there was an issue of confidence. They spend a lot of time to help small community groups to deal with watershed monitoring – the goal of the researchers was to have a preliminary map of local action projects.  In the participatory design process, the designers were thinking about a community of practice – but the participants thought that they are communicating with each other, so how to consider affinity network of ideas, and create a much more open software for sharing and communication, working together. Also, there is highly important local leadership – which can change over the lifetime of the project: from managing a team to dealing with technology. One of their participants, who is a plumber, noticed that in heavy rain events the rubbish is swept to the local river, and took his plumbing students to learn about water issues through citizen science. dsc_1717.jpgAnother project that is known in citizen science is eBird which includes amazing data visualisations of species distribution, migration and recently machine vision that is being used. The scale is from 2002 – but over 370m sighting of 10,313 species. Loads of opportunities for people in the visualisation area. iNaturalist is a social network with 20k observation a day, with 1.4m users, and aiming for 50M by 2020. There are many projects. SciStarter, and Wildlabs.net as a place for opportunities to computer scientists. Major issues – for scientists – enough data, trustworthy data, and long-term citizen participation.dsc_1718.jpg

For citizens – learning and contributing, but then they want to be acknowledged and valued. For computer scientists – it gives an opportunity to contribute to issues that are important: privacy, managing data. Some of the things that we can think of: people – how to diversify and involve more people? data quality; project management; technology and tools; values and ethics; and policies – have some real bite in different parts of the world. For Jenny – want to see leveraging the skills of HCI and citizen science to advance both, and use our knowledge to mitigate the impacts of climate change and biodiversity loss. Alan Dix – the messiness of this data is putting challenges that are very valuable.

dsc_1719.jpg

DSC_1721.JPGCitizen Science in Swansea and the Gower Peninsular (Professor Geoff Proffitt  University of Swansea). Trained as a botanist and marine science. Worked in the Wetland Trust and set a nature reserve in Wales, and habitat restoration – digging holes and filling them with water. Worked in GCRF work in the Gambia, to carry out recording in people in estimating the carbon that is locked in the mangrove, as part of REDD++ funding and can lead to mangrove restoration.  Citizen science in Swansea – the type of work that is being carried out. e.g. Dan Forman works on Barn owl diet project – getting local active natural history groups and students who are examining the food and see the changes in the diet of owls. Military sites are acting as a nature reserve – e.g. in Castlemartin and that is evidence of the botany of the site. Another project is about coastal otter and diets – people are reporting on dead otters, siting of them alive, and got over 3500 records from across the UK. They are being restored and help in formulating coastal otter strategy for the UK. In the site of Cym Ivy, which is an area that is on by National Trust, there is a new salt marsh as a result of a breach in the sea wall. Since 2016, and collecting otter spraints and understanding diets – also use camera traps. Within a year there is a growing salt marsh with rapid changes. The National Trust are considering what they’ll do in other sites. They also running Bioblitzes in Swansea with 30-100 members of the public: it builds confidence, interest, and awareness. The Rosehill quarry in the centre of Swansea, it is being used as a site. There are also – Clearwing moths distribution – using traps that imitate the smell of a female and that attracts species. The information allows the recording of many observations. Another project is the Oriel Science and the Swansea Science Festival (7000 people attending). The Oriel Science is op up discovery events with a wide range of engagement across the sciences and engineering. Managing to reach out to people who are from areas that are usually not involved in science (high deprivation index). dsc_1723.jpgAnother researcher, Richard Unsworth, involved in marine aspects – seagrass project to record them and collect evidence globally. The Seagrass spotter includes 900 people in 64 countries that projects evidence with 2100 observation. There is evidence in different places. Projectseagrass.org and Seagrassspotter.org is allowing collecting and sharing data. The BTO also carry out data collection and there are projects in the area of Swansea. The university also has an SSSI nearby – Crymlyn Burrows.

Restoring habitats – there are lots of work that is inspired by it and the UN declare the next decade to focus on restoration. Logistics – recruiting people is through places where you meet people, link to existing networks, and helping to get volunteers through connections. It is challenging to get people involved in apps.

DSC_1724.JPGThe COASST Project (Professor Julia K. Parrish, Associate Dean, College of the Environment, University of Washington). COASST has been running for 19 years. Natural scientists – the science goes to scientific publications, and to decision making. We need to technology as a replacement of people, a way to play, a wall and disconnector. But let’s think of technology as an amplifier to connect to nature and community, it also can act as an extender of sense, patterns, and scale. Issues of Wellbeing, we need to extend from humans to Gaia – the planetary systems. Citizen Science is about science, community, education, and enjoyment. There are lots of goals of citizen science – she’s on the area of hand on. The usual view of science is about a process that starts with a hypothesis, then experiment, results and conclude – but there is the need to put in a discover of pattern and wonder before hypothesis and also bear witness. Coastal Observation focuses – monitoring dead bird. COASST – deconstruct science: evidence first, deduction second. Second Demystifying science – no jargon, explain the process. Using science – bear witness and take action. In the COASST programme there is a contract, to survey carcases of marine bird in a given area, collect the foot, standard measurements and digital information. Recording on paper is – because of economics, context (sun, water).

There is a process of identifying the bird according to the foot and other identifying. 950 monthly participants, 4700 people participate since inception. 33% of people are retired, and the economic means to be retired. Average age 51, 65% male. The training – only 50% of people that get into training know birds. As people collect more data they get better – over 70% accuracy and higher. There is also a seasonal pattern – after a year, most people know the about 85% get the correct answer. What are the high/low pattern over the year, and that is something that professional ornithologists don’t know and they develop a good concept of the yearly average,. Active people after a year – hands-on programmes retain people over a long time. With long term retention rates: asking new participants why they joined, and long term participants why they stayed. The new people are interested in birds, the environment. dsc_1731.jpgLong term is staying to be outdoor, to contribute to the science, and to the COASST programme. There is also an aspect of personal identity between new and long term participants. There are differences between people who are going alone and experience the data collection, and then there are people who are joining pairs – so they are going with multiple people (nexus person that goes with different people to the activities). We need to design for loners and for social connectors (nexus). The data provides a good understanding of yearly patterns. There are also die off events that happen and records. COASST help in climate impacts, harmful algal blooms, changes in predator distribution and much more. There is an ability to record a mass die-off event in St Paul Island. They back calculate how far carcasses will get to the beach and can estimate and model mortality, which was 60 to 70 times higher than normal. That led to Die-off alert, of just reporting people in Alaska – it’s a food source, and can’t collect eggs: important for local practices. DSC_1729.JPGThere are events of many events of the region – can see the large scale pattern over space and time. By looking at the temperature of above normal patterns and the heating in Alaska and you can see the impact of increased mortality of birds. There are impacts of science and people – impact on coastal communities in Alaska, and in Indian communities in Washington, and ocean acidification that harms mussels. Let’s think about technology as wellbeing: connect people to passion, creativity, allow people to learn, increase ownership and stewardship of the natural world, increase realization and help them to take action. Most people are curious, attached to a place, but a very small group of people want to become scientists – and people would fundraise for the project than the analysis, and they want to see the scientists doing the work. Not making everyone a scientist, but making everyone involved.

DSC_1733.JPGThe Wisdom of the online crowd – Citizen science with the Zooniverse (Dr. Helen Spiers, Biomedical Research Lead of the Zooniverse Platform,  Department of Astrophysics, University of Oxford). Coming from developmental epigenetics and started in 2016 and covering some of the work of the universe. Currently the development of mobile apps etc. Zooniverse started from the story of Big Data in many fields of science, and especially in astronomy – we need data curation and human pattern recognition. The story started with Galaxy Zoo. The algorithm of the time couldn’t provide morphological information of galaxies, as Kevin couldn’t calculate all the galaxies – but analysed 50,000 galaxies, and it became Galaxy Zoo. The project was successful – 70,000 classification per hours, but that allows to complete analysis in a matter of months instead of years. The data was of better quality than the expert could do – more eyes on each image. There are many scientific outputs from Galaxy Zoo, but also unknown unknowns – e.g. Hanny Voorwerp. That has moved into cells with electron microscopy (with Crick Institute). There is much data that need annotation – annotation tools that allow providing recognition of cell data. The volunteer data quality is as good as experts. This allows understanding the nuclei of different cells – it opens up the ability to new areas in biology. DSC_1734.JPGThe work of volunteers can form the basis for ML. 1.75m registered users, and projects across science, humanities, and supporting humanitarian efforts. The Zooniverse project builder allows the growth in the projects and supporting different types of source data and the types of activities that you can carry out with it. Challenges include the need to understand how to facilitate engagement and scientific efficiency and it provides an opportunity to learn across projects. Looked at the volunteers’ behaviour across 63 Zooniverse projects, but found out several things: artificial scarcity can be associated with engagement – in most projects that shows a peak at the start and then dropping to an activity. when the research team upload the data in each time when it was available on a weekly basis, it raised the interest in the project and provided multiple peaks. The lessons need to be learnt with caution. Some projects get into high participation inequality, and also age and gender bias and there is a tension between social inclusivity in contrast to scientific efficiency. There is a need to be inclusive in study design – e.g. a project about body organs and checking people anatomic knowledge – there was an aim to have a more inclusive reach. This is an unusual project: it’s about data collection and how it can be used in a different way. There is also exclusivity – specialised crowds can provide specific skills – when there are needed expertise or local knowledge, or maybe you want task naivety crowd. Zooniverse also offer a linkage between ML and human contribution. e.g. throwing images that are surely not relevant, and asking the crowd to classify only those that the computer wasn’t confident about. Algorithms and volunteers offer different behaviour. There is also a lot of value in algorithmic diversity – computers can also be used to create engaging tasks, but need to be careful about using it – removing images without anything, reduced engagement in the project (the Snapshot Safari example of removing all the blanks which reduced engagement). There is an ethical issue – are you wasting people time. The future of Zooniverse is about Human:Computer collaboration, need to have a smart subject assignment – allocating tasks and ensure an engaging experience and combining modes of citizen science – interoperable systems, giving feedback. The communities are changing – e.g. DSC_1735.JPGGalaxy Zoo is very proactive which meet offline, and there are questions about the nature and characteristics of communities. Don’t waste people time – the commitment is to ensure scientific efficiency and find other ways of engaging people in an interesting way. The issue of inclusivity – how is the Zooniverse management team gatekeep the community? there is a review process, and also sharing it with volunteers who are happy to review project application – 50,000 repeat volunteers, which are self-selected, who provide feedback and say if the project is suitable for the Zooniverse. Very few of the projects that are scientifically valid, failed. There was a project that was thrown out – about facial characteristics. There is a different review of scientific relevance.

Extreme Citizen Science Professor Muki Haklay, Professor of
Geographical Information Science and co-director of the Extreme Citizen
Science group, Department of Geography, UCL

DSC_1736.JPGCitizen Science Inquiry: Contemporary Approaches (Professor Eileen Scanlon, Open University) talking about citizen science enquiry – the nQuire team. Citizen science inquiry is the general approach to it. Eileen sees citizen science as a way to enthuse people in science and engage them. There is a lot of things that were talks: scientific literacy and wider STEM learning. Then there are issues of volunteers and how they are involved in data collection and analysis. From the point of history, citizen science goes back to the 17th C and been going for a long time. Modern citizen science provides new ways of engaging online – such as Zooniverse or iNaturalist. At the Open University, they’ve done nQuire-it, iSpot and Situ8 that is about annotating physical places.dsc_1737.jpg First, they look at the personal inquiry project – inquiry-based learning across formal and informal settings (www.pi-project.ac.uk). Was coming from an interest in digital technology and learning, and was focusing on 12-16 old, and were searching for outdoor settings that allow students to link to issues that are relevant to them and within their areas. Inquiry-based learning is appearing in the education literature, and scaffolding the process can help people to learn through inquiry. It can be used through different stages in the learning process. Personalisation is important, but you do need to have a limitation – e.g. you can’t work with teenagers about issues of their daily diet: sharing it with other people in their immediate social circle is problematic. In Milton Keynes and Northampton, they manage to engage students in the investigation of urban heat islands. The work is summarised in the book “orchestrating inquiry learning”. The work was developed within the formal approach. At the same time, work by Vickie Curtis lead to the analysis of online citizen science (in her book). dsc_1738.jpgThe research on who engage and to what extent, you get a different picture – Vickie was a participant observer, and in Foldit where the science was very high – the participants were interested in games. The positioning of the people who participate in citizen science. Next, they worked with Nominet Trust and developed nQuire-it – so using smartphone sensors. They’ve done a co-design of an informal system with students and created different ways of exploring the world. The investigations were called “missions” – develop things that the participants are personally interested in and also to the book on “Citizen Inquiry” – citizen science + collaborative inquiry learning + crowdsourcing. The way that they are seen Citizen Inquiry is to think about a link between inquiry learning and citizen science. Trying to think about how these things are brought together. Another project, by Jess Carr is looking about representing ‘publics’ – e.g. developing the workaround advocacy research groups. In inclusive research is part of the work. By the collaboration with the BBC lead to extend citizen inquiry to allow mass surveys (in http://www.nquire.org.uk) which include confidential survey missions, and open social missions. The BBC helped in developing a joint platform and different missions were developed – from survey of sleep pattern, to work with FutureLearn, and to an authoring tool. One work that is currently happening is in the Forst 404 Experiment about different environmental sound and running a podcast. There are issues with owns data and ethical questions about such projects. There are also other activities – such as iSpot and Treezilla. Citizen science inquiry can provide about participation and personally relevant research. Evaluating learning is tricky. Open questions include how can citizen science projects raise interest in STEM and provide appealing science learning? Can citizen science have an impact on the participant’s identity – allow them to identify roles for themselves in the practice of science? The reputation system of iSpot is especially valuable (the Zookeys paper cover that).

The speakers had a common panel, exploring what are the new ideas and agendas that are emerging from the day. point of impact on the world, and science in general and can help; social inclusion that came in both days; growth in computing in challenges; including computers as participants; education;

From today – how we maximise the impact of the data that we produce and that we’re going to produce? How can we take the datasets that are being produced and how they are being used? Data can be repackaged and reused. Another thing is education and there is no impression of getting young people engaged with these types of project – informal involvement and practical science activity. There is a certain “flight from science” and we need to consider how to involve the youth into it. There are both men and women, and there are people who are leaving education (e.g. young males in the UK). There are lessons in museums that engage with citizen science: learning citizen science, DITOs, and the awareness of Ecsite and Aztec. From COASST there are issues about finding older adults because of the year-long needs of the project, but they do have cross-generation participation. There are also issues about the integration of citizen science and inquiry into education – but we need to be articulate about what we’re doing within citizen science. There is also a lot of data on different platforms, and linkage between seagrass and specific birds that are eating it and direct connection is something that ecologists don’t know how to link. There are also people who collected data over a long time and the data and in some cases, this is not shared. There is plenty of information on hatching and egg laying day when they are a very long time, but it is in small notebooks that need to be digitised and used – and this information needs to be collected, as otherwise will be lost. There are issues of a lot of unexpected information within environmental information – examples include the ozone layer reprocessing, or that looking at old records or mass die-off events are showing information that was not known before. This is an issue that we might want ML and other methods of uncommon analysis to provide us. There are also cultural identity issues – about the role of experts and the disrespect of experts: is citizen science are amateur scientists? Or are they are not like experts? Choice c – and there is a wider distribution. Mass mortality events that started in early 2000 made the front page, and right-leaning business groups wanted to hear about it as much as to conservation groups. The business groups was a demonstration of local people collecting information and managing their place. Citizen science is not left or right leaning and it gives a lot of communities to hold information and interpret it – that’s the democratisation. We are not doing the deficit model – bringing people to be like us. But is it useful to link citizen science to political debate? Citizen science can take out the politics and focus on the fact – using an agreed measurement and approach that is societally agreed. In the water projects, people became more educated about the situation so they could lobby the officials to act. There is also an opportunity to bring it the data as a way to challenge difference: it is about empowerment and not about right or wrong. Back to the engagement of kids – the ethical assumptions: if there is data collection then the parent is responsible for the data? In the OU system, there is a concern and that need to be addressed and it is an issue in school settings. There are also options for managing data by the teachers and let students deal with data, pictures, etc. It is tricky on how to engage in advance with parents and children – but it can lead to impacts on parents, too. There are also issues – e.g. reporting about the impact of pollution on an ecological site, and then claims that the site is spoiled so it can be used for development. There are lessons to be learned from Citizen Science: Theory and Practice special issue on ethics, and the Citizen Science Association ethics working groups. The ideas that are emerging and resources that are coming along is to find new questions.

IMG-20190501-WA0000.jpeg

 

Advertisements

DITOs final event (2): Doing It Together beyond DITOs

This is the second part of the plenary element of the DITOs final event and again, I’m reblogging Alice Sheppard’s notes (and editing them lightly):

The second part of the This is a continuation after the morning’s sessions. The session is based on a panel of other projects that have done work in Europe separately from DITOs, but where there has been some collaboration at least in ideas and potential of taking the lessons from DITOs forward. The session was chaired by Colombe Warin, who is the project officer of DITOs. The projects include:

D-NOSES – Rosa Arias (Ibercivis)
D-NOSES is a project creating the “International Odour Observatory”, which will be co-created. Mapping for Change is in their consortium. It takes an “extreme citizen science” approach – any literacy level, socio-economic status and gender of participants should be able to take part without barriers. You can follow them on dnoses.eu and @Dnoses_EU on Twitter.

Sparks – Maria Zolotonosa (Ecsite)
The project itself finished in June last year; was a project to bring RRI closer to citizens. Citizen science was understood in its broadest sense – data collection but also citizen input into policy making and research. It was officially public engagement, but citizen participation was crucial. They came up with a travelling exhibition into every member state of Europe; it was called “Beyond the Lab”. The exhibition is ongoing in Spain, Poland and the Netherlands. They took stories of citizen scientists, for example, a woman with Parkinson’s who uses self-tracking to monitor and take control over her disease, or a clean air activist in London who collaborated with parents to put air sensors on prams. These personal stories are very relatable to people, and they show how citizens can participate in science. Sparks introduced the “reversed science cafe”, in which people are asked to come up with questions to put to participants which can be investigated. Experts listen, change tables regularly, and bring back new things they learn to their countries. It takes inspiration from a regular science cafe in which an expert gives a talk and is asked questions – in this case, the roles are reversed and the scientist comes up with questions for the public! The citizens then discuss the questions, and the expert is often very surprised by the answers and gets new ideas for research. Lessons learned in exhibitions: personal stories are very important, exhibitions can be a catalyst for local mobilisation as long as a local partnership is established.

EU-Citizen.Science – Marzia Mazzonetto (ECSA)
A new project and website, a CSA or coordinated and support action. It has only just launched and is coordinated by the Natural History Museum in Berlin. ECSA has a large role. The main focus is to address what had been identified by the EC as a big need: to have a gateway, an entry point, into citizen science in Europe. There was an effort to involve as many European countries as possible. The platform should be a place for discussion to bring people together and ask about each other’s citizen science, or where citizens can find out what is in their area, or policy makers and science journalists to find out more. There are multiple stakeholders and there will be specific community needs.

WeObserve, Ground Truth 2.0 and other projects – Uta Wehn (IHE Delft)
In WeObserve, the project contains four communities of practice – academics, industries, communities of practice (such as DITOs partners!), citizens. Ground Truth 2.0 co-designs citizen observatories, which has a closer link with policy. Policy makers are invited into the room from the start. There are now six observatories, which each has a unique identity and has chosen its theme of research. They are liaising with policy makers. Many aspects are being re-used from other citizen science projects including DITOs; this has been made possible by sharing best practices. There is one more non-EU funded project called CSEOL, or Citizen Science Earth Observation Lab. DITOs has created a community of engaged citizens, Uta Wehn tells us – there is a huge base of people who now know what citizen science is and can participate.

Environmental Social Science Research Group – Balint Balazs, (ESSRG)
DITOs legacy – “rending invisible citizen sciences visible” – there is now a network of citizen science, including science shops. ESSRG is working as a science shop independently from universities, based in Hungary. The concept of invisible citizen science is connected to location and place. Many of us are not coming from the environmental perspective. Much of it has to do with cultural and institutional issues: what is each country’s science communication practice? Some examples of invisibility: Some citizen science projects are global; the academic papers’ titles often don’t reflect the fact that non-scientists took part. Environmental projects are often co-created and have social aspects. Do they lead to a transformative social innovation? Citizen science itself is often regarded as very niche and new, even by environmental aspects, and it is often feared that it would take a very long time for citizens to understand and develop coordinated scientific methods. There is also an apparent divide between east and west, the speaker, Balazs Balint, says – in his experience, the east has fewer established methods and celebration and also fewer academic papers. However, is invisibility an manifestation of something? How can we record the methods that are taking place, and what is the replacement for citizen science in these contexts? Are we seeing projects only funded through the EC? Are we drawing on a number of auxiliary terms? What kind of knowledge is provided, and created? Environmental citizen science can result from a state’s lack of action. Sometimes, there is knowledge that is not created by the state or academia. It is found that citizens would like to download and share data, and curate it. A culture change is taking place in several countries where democracy is a new (or “short, questionable”) experience. Many social sciences apps can be transferred or utilised to create citizen science projects, and create interesting opportunities for professionals, for example the collection and sharing of old private photos, a common digital heritage. Citizen activism is also going on, but never considered citizen science. FixMyStreet is an example of this – it has been running for 7 years in Hungary. There is a learning curve beyond these applications; people are reporting problems but would also like to take part in governance.

Questions:
Q1) Language: regarding invisibility of citizen science – is this about language? eg black people’s contributions to science are often invisible and not put in the curriculum, which doesn’t mean they aren’t creating knowledge, they might simply call it something else? Is it about language, or is it about action, or some combination? (To a Black person, “invisible” has a very specific meaning and counter-narratives and counter-perspectives are very important.)
A1) a) There is colonial thinking! There is much going on that is invisible but is not called citizen science, partly because of the language but partly because of different knowledge. It is probably much to do with language, but not entirely. b) Language is only what we can articulate; what is in our heads is much broader. How can we tap into that knowledge base? Language isn’t the only method we have. (Answer b is from Uta, who has done work in Africa with water supply issues; she will be told by very knowledgeable local people: “You are the fifth person who wants to co-create a project with me on this, and I haven’t got time – I need to spend time in the field or my family will be hungry!”)

Q2) What is the potential for citizen science to open up the anarchy of science beyond the academic facade? What is it like to be a scientist?
A2) a) It is very mixed, and we get mixed up in the terminology. There are things we call citizen science, public engagement, etc – these terms have something in common. But to look from a more traditional point of view of data collection, it does play a role in science communication. It gives people the opportunity to feel like scientists. The people who participate in citizen science projects are often white middle-class men, which means we aren’t reaching a diverse audience (although DITOs reached 51% women, 49% men). b) Sometimes amazing experiences aren’t communicated to the outside world. The Journal of Science Communication is open access; it would be good to use lessons learned in here to reach more communities. c) We use many techniques to utilise communications. There are times when we simply collect data from citizens, but we can also use bottom-up work – and these two disciplines can enrich each other. There is also data journalism.

Q3) Do any of the panelists have a single particular action they would like to implement, or problem to solve, or policy change to make? For example, to insist that academic papers’ titles reflect the citizen participation? (There are papers who credit every single citizen who takes part.) Should not all participants be credited when there is funding?
A3) Co-design is brilliant, but we can be restricted by having to report all methods to funders – for example, needing to say who will be coders in advance, which then means citizens can’t co-design platforms. So one future change would be more flexibility!

Doing It Together Science (DITOs) final event talks (part 1)

This is a reblogging of the reporting from DITOs final event, which was blogged by Alice Sheppard (which I’ve edited, lightly):

Introduction to the day

Camille Pisani, the Director of RBINS praises numerous volunteers and collaborators who have worked together, and the way different activities have been aimed at reaching many different audiences. There have been many localised events, such as waste management or coastal environmental issues. What makes DITOs different in her views is the integrative approach to the multiple meanings of “citizen science”. Citizen science goes back a long way, but for some people it’s still a new thing, and we’re still in the process of reaching out, even with simple things like communication. At the other end of the scale are people who have been volunteering or experimenting in science outside the professional environment for a very long time. When Camille met Muki four or five years ago, she was extremely interested in the idea of the escalator model.

 

 

Muki Haklay is next on “The DITOs journey”. He starts with “the world needs more citizen science” and the DITOs video. The DITOs story started in the middle of 2013 with the launch of the European Citizen Science Association (ECSA). As a fledgeling organisation, the question was how to get it going. In 2014, DITOs was set with a process in which UCL asked partners what they’d be interested in doing during the next few years, and design a project around these plans. They not only thought up the escalator, but also the thought of aiming at more bottom-up citizen science. UCL would lead, because ECSA was still building capacity and was not ready to lead a project. The initial bid was lost to Sparks, which was a wonderful project, but in 2015, a second call came out and in May 2016 DITOs began just after the 2016 ECSA conference. DITOs is very diverse, with a museum, NGOs, SMEs, universities, labs – a very diverse team with an original promise to run 500 events and engage 290,000 participants plus 1.3 million online. It was quite an ambitious target! Muki next mentions the “onion diagram”, which put UCL and ECSA at the centre with many activities and areas going on around them. The objectives included “deep public engagement”, a broad range of public activities, to strengthen ECSA, to do cross-European fertilisation and knowledge-sharing by way of a lot of interaction between the partners, and to reach out to excluded groups. Muki has rewritten the escalator model a few times to develop the ideas and have some exact numbers, such as precisely how many people in the UK are active in DIYBio, and how many watch Blue Planet or visit the science museum. Many more people “passively consume” science (such as the above activities) versus taking a more active role, such as recording birds in their garden. In many cases, people run out of time to do science, for example, while trying to support a family; the escalator allows people to move up and down according to their preference and ability. All the knowledge-sharing leads to project partners spending a great deal of time together, including in local citizen science such as visiting lakes or rivers, and all becoming friends.

 

 

 

 

 

 

 

Linden Farrer from the European Commission DG RTD (the department that is responsible for research and innovation) is next – DG RTD chooses which projects to fund, or not fund through open calls. DITOs was funded out of a part of H2020 which is dedicated to bringing people and science together (Science with and for Society – SWAFS). The objectives are, of course, bringing science and society together, but also fostering more talent for science and pairing scientific excellence with social responsibility. This can involve co-creation of agendas and policies by several stakeholders – which is quite broad, with a wide range of activities, and maybe discussing results or doing science with citizens. DITOs got funding under a topic called “Pan-European public outreach”, with the aim of increasing public awareness of science and RRI. Now, 2/3 of the way through H2020, they are concentrating on increasing the impacts and effectiveness of the programme, focusing on fewer topics but more closely – and one of such topics is exploring and supporting citizen science (others include institutional change, gender equality, etc – there are still quite a few you can find if you google Citizen Science in SWafS!). Linden lets us know that the future of H2020 and SwafS very likely involves working directly with citizens and civil society organisations.

 

 

 

 

 

 

 

 

 

 

 

The next several presentations are results of DITOs by many of its staff, taking five minutes each, moderated by Margaret Gold.

Judy Barrett, UCL, on the escalator model
Extreme Citizen Science group conceived the idea of DITOs in 2014, with the idea that citizen science should be driven by local needs, practices and cultures. UCL has mostly focused on WP6, “coordination, support and management”, which surrounds all the other work packages (such as policy). We’ve also produced a study of business models of citizen science. Our outputs from WP6 is itself a DITOs legacy, because other projects will be able to use it. We carried out 90 events, which we’ll see more of later. We implemented a MOOC (massive open online course) which has now been operating for 2 years, which has been signed up to by about 1000 people, and is also part of MSc programmes at UCL. Our events are aimed at equipping people with tools to answer their own scientific questions. We’ve made our own escalator model as “the consortium journey” – for several of us, it was our first experience of interdisciplinary work, or citizen science, or many other topics. It was therefore vital to create a supportive, communicative environment, with practice-sharing and exchange of ideas being vital. Some staff of partners were scientists with little experience of citizen science. But many individual staff members felt they had personally grown. Individual highlights include a dedication to progress in citizen science, collaboration with experts, and multi-stakeholder engagement.

Gaia Agnello, ECSA, environmental sustainability
The aim was to introduce citizen scientists and policy makers on developing methods for involvement, bolstering networks, promoting knowledge exchange and events all over Europe. ECSA particularly established the European BioBlitz Network, facilitating best practice exchange between anyone who runs BioBlitzes. Three DITOs partners subsequently established their first BioBlitz. MediaLab Prado created “Interactivos” of discussions and workshops on different topics each year, such as sustainable mobility, food systems, waste management etc. Kersnikova organised the Sister’s Lab, promoting transdisciplinary activities and gender equality, empowering women to collaborate through teaching and learning. UCL ran all-age workshops on air quality, including teaching people how to make environmental monitoring devices. European Green Week last year included discussions of environmental citizen science’s impact on policy. Lessons learned include: balance your organisation’s mandate with the values of the poeple involved; care for participants; co-design events as much as possible – talking to people before designing events; make sure the project has been felt by communities as their own because this will increase impacts; and take care of your team and yourself!

 

Imane Baiz, CRI-Paris, UPD and BioDesign
WP1 is Biodesign, which even the project leaders found a mysterious word at the beginning! It may mean art, or integrating buildings into the ecosystem, or synthetic biology (including the tools and methods). It connects people – for example, scientists with artists. It is interdisciplinary. It also connects ideas, too. We had a total of 700 events, which involved a lot of travelling and creating exhibitions, and partners showing their work to each other, going into schools, designing the Science Bus. It can be about empowerment – designing a sustainable future, inspired by nature. There were also different notions from different people – for example of extensive travel, but in fact, it’s like a group of superheroes who are trying to make the world a better place.

Paweł Wyszomirski, Eco21/Meritum, air quality
Polish cities are suffering from serious air pollution, especially in autumn and winter. Eco21 began to work with policy makers. They were creating data, which they decided to use to empower people to do something about the pollution – which involved teaching people how to use numbers to make decisions. This also allows people to talk with others in their neighbourhoods. Membership of ECSA allowed Eco21 to be invited to an air quality workshop, to learn how to empower and engage people in citizen science and in being able to do something about poor air quality. Pawel hopes that many people will come and ask him about European Clean Air Day.

Carole Paleco, RBINS, the escalator model at the museum
A way that RBINS have tried to apply the escalator model is to evaluate their activities and events, and also trying to involve the citizens at an early stage. At a citizen science cafe, for example, the monitoring and evaluation of feedback from participants has led to being able to give the facilitator feedback each time. They have a small touring exhibition that goes to schools in the Brussels region. They’ve organised biodiversity workshops with volunteers. They asked participants what they would put on a “Z-Card” which would go out to schools to raise awareness of biodiversity. She gave a report on a Phasma Meeting at RBINS, and organised their first BioBlitz last year. It was very focused with five scientists. The XperiBird has given out nestboxes to schools so that the children can observe birds nesting and bringing up chicks.

Simon Gmajner, Kersnikova, Bridging the Gap
Kersnikova aims to bridge the gaps between scientists and artists, also with participants and events. There was no phrase for “citizen science” in Slovenian, so it was translated best as “participatory science”. They then decided to organise exhibitions which would spur discussions. They did a BioArt exhibition which included science cafes which deepened discussion and complimented the artists’ and scientists’ modes of engagement. They managed to host the author of a book on biotechnology. A problem they ran into was people asking “What is art and what is science here?” which they found they could not always answer! They wanted to build an ecosystem that would support itself, which involved training people in interdisciplinary matters. They have a biotechnology lab and also ran workshops on biorobotics and soil tasting! They also trained mentors, so that citizens who had been coming for a long time could teach newer people.

https://twitter.com/mhaklay/status/1113363070355681280

Claudia Gobel, ECSA, Policy Engagement
DITOs has many public engagement activities, but also wants to talk to decision makers, which ECSA has focused on – at European, national and local levels. They’ve held 16 discovery trips, 17 stakeholder round tables, a pan-European policy forum and many more additional workshops and events. These took place in various countries. Policy briefs have come out of this, with a focus on open science and on responsible research and innovation. There is a diversity of voices in citizen science. It is very important to understand how citizen science is conceptualised and done – which is where the escalator was very important. There are different communities of practitioners. Citizen science needs cultural change and a plurality of voices, transparency, diversity, inclusiveness and these must be very important in our organisations. They also want to build more networks of stakeholders. Claudia also highlighted the citizen science book – if you’re here, please help yourself to a copy, or download it here.

Ted Fjallman, Tekiu UK, WP4 Policy Engagement
Across the project, we’ve managed to achieve 50% more events than we originally planned – DITOs has been very successful in the policy area, too. Tekiu is a for-profit organisation, though is not seeking to make a profit from DITOs. Ted observes that people are learning differently. He asked how many of us go to the cinema (nearly everyone); how many would be willing to pay what you’d pay for the cinema to attend a policy event? It was fewer people. Tekiu joined DITOs to understand how society is changing as a whole (which they cannot ask a single company). Discovery Trips are Tekiu’s brand; they take 10 to 25 people on a trip from one country to another to meet with their counterparts abroad so both parties can learn what the others do. Sometimes, participants may go on for example to join their city council. They plan to keep linking scientists with policymakers. They feel the future lies in active monitoring – we all have a phone, which has technology we wouldn’t have been able to imagine 30 years ago. It is, therefore, time to update the way we think.

Participants’ panel:
Cindy Regalado and Pawel Miedzinski from eutema moderating – Adam, Bernard, Roland, Mark, Pen-Yuan

Adam: Was part of Science has no Borders at UCL. Had a stall with an artist friend who collaborated on art and science of complexity. Attended film nights which included discussions of uneasy topics such as the history of eugenics. Attended Do It Together bio workshops, which taught him how to do simple biology experiments and procedures, use cutout microscopes, and learning about work at an aquarium and how to sample from the wild.
Bernard: Also worked with Rachel at the aquarium (as above), organised some workshops in Ireland with aerial kite mapping to which some environmentalist groups were invited; they hope to map their waterways in the future. They have also worked with young people from youth work in Ireland – they took some cameras which would otherwise have ended up in a landfill, and allowed young people to take the cameras apart to see what was inside them and convert them into near-infrared.
Roland – OpenWetLab evenings at Waag. His background is biology but he’s learning a lot of DIYbio and technology this way. Went to Kersnikova for a Bio-Art project and conference – all these were funded by DITOs; many participants in a Bio-Art movement came from around the world.
Mark – Was a Science Bus captain. Had already done a lot of outreach and engagement activities around Ireland. Science Bus involved travelling in a camper van around Europe collaborating with museums etc to work with the local public and get them engaged in workshops. The bus captains travelled together but didn’t always know each other beforehand! They taught the public how to carry out small DIY projects and gave them tools to investigate the world around them, also encouraging them to investigate and critique the world around them in this way. His favourite part was getting people interested who had never carried out scientific activities this way before. They were interested in the public’s life hacks and traditional remedies – how did people get information about what to do about (for example) what to do about bruises or mosquito bites when they didn’t engage much with science? A commonly stated solution was “urinate on it”!
Pen: worked with Cindy on delivering electronics workshops for the public, learning about open hardware and taking control over it and understand it. Has also worked with Cindy on DIY environmental sensing. He has also been investigating the nature of knowledge and creativity, such as creative commons licensing – how to creatively subvert copyright laws to share knowledge. He has, therefore, run many workshops in different places such as Italy, Scotland etc, and worked with hackerspaces. He has found that many people don’t know how to solder, so has used conductive thread.

Q: Has DITOs changed the way you do your work or practice?
Adam: Yes, now collaborates and gives talks, and works with many different people – DITOs was a big confidence-booster.
Bernard: Current role means diverting mattresses from landfill; quantifies work, work done manually – makes that work visible. Does mapping, community gardens, working with young people and getting them to understand the importance of data.
Roland: Has trained biohackers who then go on to train each other; has enjoyed watching skills spread. DITOs has personally influenced him to give workshops, feeling there is a mix between arts and science.
Mark: The Waag had the idea of the science bus; when he met them he felt they were wonderful but had a different way of thinking from how he would have carried out his work, so it taught him a new way of seeing things, which he felt was progressive. He applied these ideas to the science bus and his own work in Ireland. He returned to Ireland trying to find out how to engage the largest number of people possible – and has used the opening of Ireland’s new science centre to engage more people in citizen science and to see what they can do themselves.
Pen: Worked with a citizen scientist who built his own tools and developed his own methods for ecology – and discovered a population of deer near his village. This caught the attention of the local authorities, who built a protected area for the deer. Citizens do not just passively collect data. Science can make all of us become more engaged citizens.

Citizen Science 2019: Designing technology to maximize cultural diversity, uptake, and outcomes of citizen science

 

DSCN3339This blog post was written by Michelle Neil of ACSA with edits by me (yay! collaborative note taking!) (apologies for getting names wrong!) 

The session was structured in the following way: first, each person presented their issue, and then they answer questions that were presented by other panel members. The questions that we managed to get through are:1)  What changes have you made to your design in order to be more inclusive or reach out to people beyond your “usual suspects”?

2)  How can we promote stronger partnerships between HCI/UX design & citizen science in order to produce technology that encourages inclusion?

3)  How do we begin to engage communities in the design of technologies and technology-based learning experiences, particularly within diverse communities and with diverse participants?

The session was organised by Jessie Oliver (Queensland University of Technology)Jessie’s research in about engaging people with acoustic citizen science particularly birders.  what are the barriers and challenges about looking at acoustics?

A1 What do people want to do? Be inside or outside? Musicians may be the key for acoustic citizen science more then birders.  Showed birders spectrographs of the bird sounds and they are not interested – they want to see birds!

A2 get it recognised as something that is worth looking at. Then keep diversifying. Then ask more / different groups.

Jonathan Brier (University of Maryland) Looking at how we do the science of citizen science and bug people about security and privacy. working on national portals of citizen science. interested in what we do on larger systems and how they change.
A1 Site needs to be compliant so people of all abilities need to be working

Q2 ask.  Go to the uni students! Also, go to the lowest level of technology.

Muki Haklay (University College London) in the context here, focus on research with non-literate groups on data collection and analysis but highlighting how paper-based prototyping in the field (including a chicken that walks on the prototypes) can help in effective design. Namibia - Map Visualisation Session2_Moment2
A1 how do we include train-spotters in citizen science? why?  Plane spotters used to be mocked until a database was needed about illegal planes….. the moment you start thinking about not your regular community but those that are more detail-oriented then we have inbuilt citizen scientists.

Q2 how he started in HCI – got into the area without knowledge from undergraduate computer science studies, so only learned it during PhD (with the help of Angela Sasse at UCL), and therefore know that need to collaborate with mainstream HCI experts on different projects, or working with MSc students.

Jenny Preece (University of Maryland) interest in citizen science on biodiversity of data collection.  Book  – Interaction Design that will come out soon in 5th edition and include 5 citizen science case studies.
Citizen science and human-computer interaction are both interested in humans. cit sci wants people to participate while HCI wants to see how people interact.

A1.  Don’t ask people to give you their design ideas. They don’t know what they are or they are scared to do so. Need to ask it differently

A2.  After hurricane Katrina libraries were a huge sanctuary so most people went to libraries to give people a centre of focus with a community and talking to the outside world.

Tamara Clegg (University of Maryland) new to citizen science. try to help people scient-ize in their everyday lives through designing technology and make learning experiences. NatureNet project is trying to reach communities that are underrepresented to do projects that better sustain their communities by using technologies.

A1. Titles can alienate people. come and help us make our technology better works better. Make it practical and relevant and communicable.

A2 Used HCI undergraduates as part of their assignment to do usability studies on tech as part of their degree. Also created the standards in accessibility. Have more conversations.  Also, (questions from the audience about hurricane Katrina aftereffects) equity social justice as started to take shape in the community.
Grant Miller (University of Oxford – Zooniverse)  Helped build over 100 citizen science projects in citizen science. engaged over 2 million people so far. PenguinWatch. The barrier to entry couldn’t be lower. Remove the barrier or get it as low as humanly possible.  Provide pathways for deeper engagement and connect with researchers. use plain language increases engagement.

A1 volunteer translation app in zooniverse so anyone can do projects.  Don’t ever ask anyone to be a citizen scientist on your project! Keep the barrier to entry as low as possible.

A2 ask for people who do have broadband to help those who don’t. e.g. directing first responders to help those who are in trouble from the other side of the world.

FROM THE FLOOR

Andrew Robinson

A1 If people were recording pokemon go but actually doing biodiversity that would be huge! We went for gamers with questagame. we are taking them outdoors. its an example of a non-traditional citizen scientist.<

Maryan Misouri

A1 Ended up working with people who were blind. very challenging. took more time, differently set up.

A2 Petra (Barcelona).  Explore hackerspaces, makerspeaces etc.

A2  Take a more basic approach. 80 rural counties in NC where broadband is not even accessible. Primarily done via telephone line so can’t assume good data transfer. Most affected people don’t have broadband. how do you do citizen science when you don’t have broadband? or you’ve had a hurricane?

Muki answer:  there are persistent digital divides. In some low-income communities, they leave school at 16 years old and don’t touch a computer. Have to re-learn after 5 years how the technology works again due to advances in interface design so don’t assume that everyone knows how to use computers. Need to look at south-north innovations – e.g. Ushahidi Brck.  local-mesh networks. .

Jennifer shorts-valler (?)

no communication. Recently taken over a Citizen Science project. How do we make it the best it can be? HCI folks were not on the radar. How do we connect the researchers and the HCI together? (Jessie to connect)

Daniel Powell uni of Maryland

Undergrads want to make an app for everything. what else is out there? Who else do we go to? How do we find these partnerships?

Muki – consider an empathy project. force student to deposit smartphones and use a function phone for a week.  In my field, there is a problem that most people don’t know how to read maps but the people in GIS think that everyone can read them. Issues of empathy between communities and those that design tech for them. Latest technology gets you into the top conferences but you can innovate on the function form. Get the empathy in.

Jessie created workshops and paid to bring citizen scientists plus brought in HCI people to co-create and was very fruitful

Jenny suggested developing an INTERACTIONS article and something similar with citizen science journal

Mark Handrichaw uni Ottowa

timing of the relationships and partnerships. need to have everyone together at the start. so you don’t go down rabbit holes.

yourong veee uni Washington

we are the best people to understand the users not the web designers. a difference of the partnership.

JESSIE: partnership doesnt exlude money.

Grant: get ownership and buy-in so get them interested (designers etc) treat them in the same way as volunteers but pay them.

Julie Sheerd Natural history of Denmark

Asking people to do an experiment and ask them to fill into a database. most said too hard and filled in the hard copy sheet instead. what about all these places online.  need an advocator in each country.

Jessie: need someone paid to collate and enter data. Privacy issues. need to make a clearinghouse that we can all use.

Tammy: the challenge in entering information into computers is a common one. If you are with family it is always easier to do something on a paper rather than entering onto the phone.

Vinny vandee design laboratory of san Diego

know the best practices but not everyone does. need a basic tutorial which describes<

JONATHAN we could add these ideas and FAQ on the associations’ websiteGuidelines are only general. number rof different guidelines.  A question of people being able to find it. Needs to be customisable to the community.

Ortez  (?)

wants to create a game that is super connected but it is super expensive. Paris has BirdLab. Costs $50k Euros. I don’t know how to find the money. How do you find the money? (Talk to Andrew from Questagame or Zooniverse but depends on what type of engagement you want).  Do you want it to actually be a game? explore all possibilities.

Can use the principles from community engagement of going where people are – in physical space but also online. need to go to where people are. the example is #RimFire01 observation spot on the way to Yosemite . Check the hashtag #Rimfire01

Using twitter or facebook (Andrew) we have a tendency that our motivations are everyone else. What motivates citizen scientists? Financial? gamers? Repercussions of using twitter and facebook for citizen science. A lot of people aren’t aware of this”

Sydney

Flip the conversation. Citizen science work is getting kids outside. How do we include audiences who are disabled / too scared to go outside involved? how can we do it in a way that brings everyone in?

Brian Brown at Standford (TAMMY) – VR – count the healthy options in the community.

JOHNATHAN: Google hangouts used to engage others who can’t get there.

ALICE SHEPPARD:  Potential for soundscapes in citizen science. SoundScape, Project Soothe. Have you heard this bird?

HUSH City app.

MICHELLE _ sometimes HUSHCity app is used by parents who have kids who can’t handle loud noises. motivations.<

TAMMY’s QUESTION<

How do we engage?

MUKI starts from failure.  Coming into the area long after there were racial tensions. Somalis were not included and realised that at the end of the project. Needed to check the gov census first before you go into an area. Passive inclusiveness vs assertive inclusiveness.

GRANT; try to realise that your failing at it. Go and talk to diverse communities. Sitting with 6 blokes in Oxford asking the question means you haven’t started right.< VINNET PANDEY: Anytime I go into a formal meeting and pitch my project I went first into a kombuchaHUSH workshop. made friends. got into the community. JENNY:  be prepared to be very persistent and just keep trying. Ideally,  spend 1 to 2 years with a community so I know them really well before writing the grant proposal TAMMY:  Best one yet has been with my church. JESSIE:  buy-in is so important. started as a participant observer. So thrilled when I realised that they valued my work. FIND THE RIGHT PERSON IS TO GO IN AND WHO THEY HAVE TO SEE> DO THE RESEARCH!

FINANCIAL

Need to trick the organisation to get money? Include funds in your budget for community involvement / interns.

Opportunity: come and help us create the ExCiteS Social Enterprise!

1. children explore and discuss icons after a particiaptory software development session in their camp. longa, republic of congo 2013The Extreme Citizen Science group, set up about 8 years ago, has developed two main technological infrastructures – Sapelli software to allow data collection by low-literacy participants, and GeoKey, a data management system for community mapping. We have also developed an engagement approach that allows for the co-production of the data collection process, and for sharing of the information in a culturally sensitive and ethical way. These developments were funded by the Engineering and Physical Sciences Research Council (EPSRC).

We now have funding to grow these activities (and in particular the use of Sapelli) into a social enterprise, and we’re looking for a consultant (who will be encouraged to apply for the post of director once the organisation is set up). We have £40,000 to enable the consultant to dedicate themselves to develop the organisation over a year and a bit.

Apply for this post by responding to the tender available here

Further details:
UCL’s Extreme Citizen Science (ExCiteS) group has recently been awarded EPSRC Impact Acceleration funding from the “Discovery To Use” initiative at UCL. The funding has been awarded to launch a social enterprise – the ExCiteS Social Enterprise (or ESE), via the Accelerated Market Entry and Upgrade project (AcuMEn). This tender represents one of several work packages to help launch this process. Each work package (see below) will be tendered separately.

Extreme Citizen Science (ExCiteS) is a situated, bottom-up practice that takes into account local needs, practices and culture and works with broad networks of people to design and build new devices and knowledge creation processes that can transform the world. Over the last decade, ExCiteS has worked with indigenous and traditional communities in Cameroon, the Congos (RoC and DRC), Central African Republic, Ghana, the Brazilian Amazon, and Namibia on a range of projects – be it using participatory mapping to combat illegal resource extraction or invasions (often in the context of logging and poaching), or to monitor wildlife populations or a community’s territorial boundaries. This work supports environmental justice and strengthens conservation efforts as well as promoting and protecting the rights of these often vulnerable communities who sometimes live under the constant threat of exploitation and violence.
Our custom-developed mobile data gathering platform called Sapelli supports rapid adaptation to local conditions in the field through our unique approach that centres on participatory design with non-literate, non-technologically familiar users – developing locally-specific configurations of Sapelli to address problems identified by the community. Over the last 10 years we have carefully honed our methodology based on the Free and Prior Informed Consent (FPIC) of participants into the development of a clear Community Protocol (CP) for the use of the technology and the data that is collected with it. These methodological approaches are integral to the successful application of the technologies we have developed.

The purpose of the AcUMEn project is to transform research collateral (the technologies and know-how) of the Extreme Citizen Science (ExCiteS) research group into a set of commercially viable yet socially focused offerings in what we will describe as the ExCiteS Social Enterprise (ESE). We have reached a point of maturity with our tools and methods whereby we are able to transpose these research projects into a standardised approach suitable for various forms of service delivery. Whilst this is workable in a research context, they are barriers to usability when positioning it as a commercial proposition. This project is designed to remove those barriers, to establish a core operating model and branding, a clear set of commercial offerings supported by a clear business strategy, and to obtain an initial tranche of work.

This project will consist of three work packages (WPs), of which this project is the first:

WP 1: Secure initial funding for contracts, consolidate project delivery approach and build initial team, as well as control WP 2 and WP 3 in consultation with UCL ExCiteS. Towards the end of 2019, the role of a permanent director will be advertised via an open application process.

WP 2: Hire expert social enterprise consultants to develop a clear commercial strategy and 18-month roadmap in line with ExCiteS’ ethos of social responsibility and collaboration.

WP 3: Software consultancy to deliver key improvements to Sapelli, the mobile data gathering platform developed by the group through the last decade of research.

Please note that the exact constitution of the other work packages may be subject to change, depending on how this first phase of work proceeds.

10 years of Mapping for Change

November 24 marks 10 years since Louise Francs, Chris Church and myself set up Mapping for Change. It’s a proud moment when the social enterprise that was set out of a research project at UCL is now well established, and the work that it does is mentioned in the annual report of the Chief Medical Officer, appear in the Guardian, and develop projects in many places far from its origin in London – including in Barcelona, Katowice, Valletta, and Kampala.

Mapping for Change came out of the Higher Education Innovation Fund (HEIF) funded “Mapping Change for Sustainable Communities. Originally, we’ve approached Steve Coast and Nick Black to develop a community mapping platform, but they got busy with CloudMade and we were lucky that Claire Ellul stepped forward and developed the first version of the community mapping platform during her postdoctoral research. Claire is our unofficial co-founder and acted as technical lead for a long while. Mapping Change for Sustainable Communities was about to end in December 2008, and Louise, Chris and myself decided that we’re going to continue to utilise the platform and engagement methodologies that we’ve developed through a new organisation, so we set up Mapping for Change for this purpose. Originally, Mapping for Change was supposed to be set as a collaboration between London 21 Sustainability Network and UCL, but with the demise of London 21 in 2010, UCL became the main owner of it.

As to celebrate the 10 years, I’m picking up some activities and developments in Mapping for Change from each year, but first, I have to go back further – 14 years ago:

GreenMapMeeting20042004 – this email, from Vinciane Rycroft, at London21, who at the time developing their innovative online Green Map for London, was to establish a connection between UCL and the organisation. Following this, I learned about London 21 effort to record community-led sustainability activities across the city and represent them. The meeting in 2004 eventually led to the development of “Mapping Change for Sustainable Communities” project and the creation of Mapping for Change

2008HWCommunityMap6-Workshop-MCSC.JPG the basis for Mapping for Change was an extensive set of workshops that were carried out in different areas in East London. The image is taken from a workshop at Hackney week in March 2008, which was eventually digitised and shared on the new community mapping platform – and in this image both Louise Francis and her London 21 colleague, Colleen Whitaker, leading a participatory mapping workshop.

MfCBrochure2009 – With the first brochure and also a description of existing activities, we started securing the first projects that were paid for. These included working with different faith communities across London on sustainability issues, and also a map of food growing in Brixton (linked to the Transition Town group there). Another project started at the time was with UCL Development Planning Unit around Hackney Marshes.

 

DSC01239 (2)2010 – the official launch of Mapping for Change at UCL included an endorsement from Steve Caddick, the Vice Provost for Enterprise (in the picture on the right). We have also started working with UCL Public Engagement Unit on understanding the relationships between UCL and the local community that live around it. Most importantly, we have secured a social enterprise award from UnLtd, as part of their programme to support social enterprises in Universities. We also started to carry out air quality study in the Pepys Estate. Some of our work was covered in GIS Development.Diffusion sample3

2011 – the work on community-led air quality monitoring started to expand, with studies in Highbury and Islington. We also carried out work on mapping activities in canals and waterways and helped The Conservation Volunteers to assess their impact. As a UCL champion for social enterprise, it was possible to encourage the institution to support activities such as those of Mapping for Change in a more organised way.

2012 – the main change to the company in this year happened with the help of UCL Business, the technology transfer office of UCL (and in particular Ana Lemmo). We changed the registration to a Community Interest Company (CIC) and also made UCL the owner of the company, which made it the first CIC that is completely owned by the university.

2013 – following the transition to UCL ownership, we were selected as the social enterprise of the year. We also launched the Science in the City project in the Barbican – a year-long air pollution monitoring study in the Barbican estate in the City of London.

Street mobility toolkit2014 – Mapping for Change was used for an Impact Case Study in the research evaluation framework (REF) exercise that year. This required explaining the work that was developed in the first 5 years of operation, and in particular air quality studies. During this year, we’ve hosted Karen Martin, who carried out a participatory mapping project with people who use foodbanks (see her slides below). During this year, we also secure the first major EU research funding for our work, through the CAP4Access project, as well as UCL Street Mobility project. At the end of the year, the new database system for managing community mapping – GeoKey – was released by UCL ExCiteS and form the basis for a new Community Mapping system.

Southwark 2015 – we have started collaborating with the Engineering Exchange at UCL, and provided training in participatory and community mapping. We also released the new community mapping system – updating and replacing the software that was used from 2008. This was an extensive effort that required significant investment. The new system facilitated the creation of maps for different clients – it was possible to create a bespoke front page for Eco21 in Poland and other organisations. At the end of the year, we carried out a crowdfunding campaign to raise funding to support community-led air quality projects (see also here). We also helped the London Borough of Southwark to carry out a consultation on its development plan. You can also find notes from a talk at the Building Centre on Mapping for Change activities.

2016  – the year started with the launch of a new Horizon2020 project, WeGovNow! which is now its last stages. With the growing concern by the communities around UCL on the health impacts of HS2 development, we collaborated with a visiting researcher (Irene Eleta) on understanding the interactions between researchers and communities on air quality projects. We also had our first contract with the University of Malta and providing them with a platform for community mapping that they can use for different projects.

Participatory Mapping Methodology2017 – 10 years after it was originally developed, the participatory methodology that we use is published in the Routledge book of Environmental Justice, another major change happened in the late part of the year, with the office of Mapping for Change relocating to Mildmay Community Centre in Islington. This was, in some way, a close of a circle, since in 2008 when we just started, working with the project Citizens Science for Sustainability (SuScit) which was running in Mildmay was considering the use of community maps, and in 2012 Cindy Regalado carried out one of her playshops in the community centre as part of her research in ExCiteS.

2018 – Mapping for Change is now well established, and running multiple projects – maintaining the online maps, participating in Horizon 2020 projects – a new one, D-Noses, just begun, and being invited to participate in tenders and proposals. Nowadays, I actually know that I don’t know about many of the interesting projects that are happening. It operates in synergy with the work of the UCL Extreme Citizen Science group and continues to grow. It is a successful example of a knowledge-based social enterprise.

There were many people that helped Mapping for Change, worked or volunteered on the many projects that were carried out over the years – and this is an opportunity to thank all of them!

New publication: Participatory citizen science

I’ve mentioned in the previous posts about the introduction and conclusions chapters in the book “Citizen Science: Innovation in Open Science, Society and Policy” and the chapter about citizen science in universities. The final chapter in the book that I would like to highlight is my chapter “participatory citizen science“. As Rick Bonney pointed to me, on the face of it, this title sounds like a pointless repetition because all citizen science is participatory science by definition, and therefore this title can be translated to “participatory participatory science” – which doesn’t make much sense…

However, I contend that it does make sense because the issue of participation in citizen science and “what exactly the word participation mean?” is not that simple to answer. A good demonstration the fact that participation is not that simple is provided through to frequent references to Arnstein ladder of citizen participation in the literature on citizen science. It is something that I have been exploring in various papers and in my research. The chapter itself is a polished, peer-reviewed, version of my keynote from the ECSA 2016 conference (and the blog that accompanied it). It is an investigation into the meaning of participation and starting to answer who participate and how they participate. The chapter leads towards a 2×2 typology of the type of participants and the depth of engagement across projects.

The highlights of the chapter are:

  • Common conceptualisations of participation assume high-level participation is good and low-level participation is bad. However, examining participation in terms of high and low levels of knowledge and engagement reveals different types of value in each case.
  • The spectrum of citizen science activities means some are suitable for people who have education and knowledge equivalent to PhD level, while some are aimed at non-literate participants. There are also activities suitable for micro-engagement, and others requiring deep engagement over time.
  • Issues of power, exploitation and commitment to engagement need to be explored for each citizen science project, as called for by the ECSA Ten Principles of Citizen Science, in response to the need for a more nuanced view that allows different activities to emerge

You can find the chapter here.

Table of High and low engagement and skills from the chapter