Eye on Earth (Day 2 – Afternoon) – Cost of knowledge, citizen science & visualisation

The first afternoon session was dedicated to Understanding the Costs of Knowledge – Cost of Data Generation and Maintenance (my second day morning post is here)

DSCN1220The session was moderated by Thomas Brooks (IUCN) – over the last couple of days we heard about innovation in mobilisation of environmental and socio-economic data. All these innovations have price tag, and some are quite large. Need budget for it and pay for it accordingly. Establishing costs for knowledge products in biodiversity is important. First, four products are explored and then the costs analysed.

DSCN1221Richard Jenkins – IUCN read list of Threatened Species. He explain the list and the essential procedures and components that created it. The red list is a framework for classifying threatened species with different classifications with vulnerable, engendered or critically engendered are included in the list. It’s critical source for conservation – over 75,000 species, with over 3,000,000 people visiting the website each year to find information. The foundation of the information is a structured process with ongoing cycles of evaluation and analysis. They are based on donor support – volunteer time in data collections, as well as professional time to evaluate the information and running an on-line database. Costs include workshops, training and travel, for professional time there is communications, researchers, developers, fund raisers and ICT costs: hosting, maintenance, software licensing, hardware etc. The costs can be one-off (setting new system), recurring costs (evaluations) and annual costs (systems and people). Need partnerships, voluntarism – essential and need to be recognised. Re-assessment are needed and also developing tools & uptake

DSCN1222Jon Paul Rodriguez – IUCN Red List of Ecosystems, as an emerging product – ecosystem collapse is transformation beyond typical situation. Example for this is Aral Sea – with impact on wildlife and human life around it. They use a risk model for ecosystems with 4 symptoms as criteria. Similar categories to the species red list. They do global assessment at continental scale and national scale. Costs: compilation of data which are spatial information is complex, time consuming and challenging. There is economy of scale is you do it at regional / global analyses, and first assessment is costly, but updates will be cheaper. The benefits: ecosystem mapping can be used for other knowledge products (e.g. protected areas), capacity-building model, and doing it with open access data. The potential of integration with the two red lists there is a more effective products. Commercial users will need to pay.

Ian May – birdlife international –  key biodiversity areas (KBAs). Set of information about sites that are identified for biodiversity conservation using standard criteria by a range of bodies. There are important bird areas, critical ecosystem partnership fund areas (particular hotspots in multiple taxa). Future direction is to standardise the KBAs. They are used into IFC Performance Standard 6 that force development banks to take them into account, they are integrated in Natura 2000 Birds Directive and in CBD Aichi Targets.

DSCN1224Naomi Kingston – WCMC – protected area (Protected Planet product) – it’s a project about deliver, connect, analyse and change – world database on protected areas. Have been in development since 1959, evolving from list of national parks and equivalent reserves. There are 700 data providers globally but also NGOs and community groups. Database that evolved over time need to be treated carefully and consider what each polygon and point mean. There is 91.3% polygon data, and grown from 41,305 sites in 1998 to 200,000 today. They raise profile through different activities. There is a website – www.protectedplanet.net . Data is supposed to be updated every 5 years, and is used in SDGs, academic research and strategic plan for biodiversity. They want to see decisions that are based on it – e.g. IBAT that support business. There is direct connection between resources that are available to the ability to provide training, outreach and capacity building .

DSCN1225Dieggo Juffe – costing the knowledge products – he assessed the financial investment in developing and maintaining biodiversity information. evaluating development costs to 2013, maintenance and future costs. The datasets that were covered are used in decision making, academic research and more. They developed methodology to evaluate primary data collection costs, network supporting costs, national red lists of species, and the costs of producing scientific papers. They looks on different aspects: personnel, infrastructure, workshop & travel and publication and outreach, looking at all the funding – from donors, private sector, government, NGOs etc., including volunteer time and converted it to USD in 2014. Looked at data since the 1980s to 2013. Today, investment between $116 to $204 USD in development and maintenance. 67,000 to 73,000 volunteer days – almost 200 years. Annual investment 6.5 Mil and 12.5 volunteer days/year . Most was funded from philanthropy (53%) and government 27%. Very large investment in personnel. They exect that future investment to 2020 will be in the range of 100 mil USD. That will give us a comprehensive baseline. Without data we can’t make decision, This is very small compare to census running to other systems. Some of the open questions: what’s the impact of this investment? are there better way to make the products even more cost-effective? what is the real cost of volunteer time? How to avoid duplication of effort?

wpid-wp-1444253313774.jpgA second afternoon session focused on Everyone is a supplier: Crowd-sourcing and citizen science and indigenous knowledge. Craig Hanson (WRI) opened with a comment that there is a lot of data from remote sensing, professional scientists – but what the role of citizens? there are 7 billion mobile phone and worldwide and with near global Internet connectivity, citizens anywhere are now capable of being the eyes and ears of the planet.  The session looked at successful approaches for engaging people to crowd-source data and contribute to citizen science, and how indigenous knowledge can be systematically integrated into decision-making. With applications from around the world. WRI is  also involved in this process, and in global forest watch – started from partners processing data, but satellite can’t see everything, and JGI and WRI use ODK  to provide ground truth on forest clearing.

Jacquie McGlade covered UNEP Live – citizen science mentioned many time in the summit, but now we need to make voices heard. We need alternative models of how the world operate. All UNEP assessment will include alternative views of mother earth – a challenge for western science point of view. UNEP Live was designed to give citizen access to data that was collected by governments, but now it also include citizen science – there are now legislations that include rights for people to gather data and making sure that these data are used in decision making. It’s all about co-production of knowledge. From the structured world with metadata and schema to the unstructured data of social media and NGOs. The idea of co-prodcution of knowledge, require management of knowledge with ontologies, and noticing 23 different definition of legal, many definition of access or forest and this is a challenge. SDG interface catalogue is providing the ontology. Example from climate change in the Arctic or in species monitoring in ecosystem capital account that involve forest communities. Motivating people is important – air quality is a great opportunity for citizen science with local interest with information. People in Kibera were willing to pay for access to air quality equipment as they see it as important for their children.

Brian Sullivan (Google Earth Outreach) – everyone is supplier. Indigenous groups using tools for telling stories, environmental monitoring and the protected area of the Surui is been included in partnership with Google. They’ve done cultural mapping with the Surui and worked with other communities who decide if they want to make it public or private. Environmental monitoring was another activity – using ODK. They build resource use and other information that help to protect the land. They are working with other groups in Brazil. Another project is Global Fishing Watch – visualising fishing fleet. Using machine learning, they have been monitoring fishing, and it also allow you to zoom in to specific ship. Monitoring areas when there are limited resources and they can’t enforce by sending ship.

wpid-wp-1444253326705.jpgTunitiak Katan looking at his tribal territory in Ecuador – the national context, indigenous people, in climate change and measurement. Ecuador have many indigenous groups – 11 different cultures. He was involved in carbon estimation and ecosystem assessment. Working with different groups using traditional ecological knowledge (ancestors knowledge). The explore the issues of climate discussions with different groups from 9 cultures, with 312 people discussing REDD/REDD+. They carried out measurements in the Amazon demonstrating carbon capture. Now they carry out a project at Kutukú-Shaim region for conservation, restoration and management, selected because the area got a lot of rivers that feed the Amazon river. They aim to achieve holistic management. “We and the forest are one”.

Nick Wright from @crwodicity – belief that in each organisation or community that are transformative ideas that are not seeing the light of day. We are more connected than ever before. Technology change the way people link and interact and becoming the norm. Connectivity make technologies part of the solution, and the vast majority of the world will benefit from this connectivity. It’s about not just collecting the information but also to connect the dots and make sense of it. Increase connectivity is challenging hierarchy. How can citizens participate in decision making and opportunity to participate. The crowdsourcing is a way to strengthen relationship between government and the people. Crowdicity worked with Rio to explore the Olympic legacy. They created Agora Rio to allow people to discuss issues and make the city better. They started on-line and move to the real world – pop-up town hall meetings – coordinate community groups and reach out from the on-line to those who didn’t access.They had a process to make it possible to work on-line and off-line. Led to 24 proposals for projects, of which 4 are going forward and done in cycle of 12 week. The importance is to create social movement for the period of time – sense of energy. Crowdsourcing can work in the UN system – post-2015 development agenda, help to amplify the conversation to 16 million people around the world – take views from across the world – BYND 2015 is the first ever crowdsourced UN declaration.

Andrew Hill of @cartodb covering the importance of citizen science in Planet Hunters, but wanted to mostly wanted to talk maps. How to engage people who can contribute code or technical skills. GitHub is a system that is central to technology working. Successful project can have many participants. It’s a community of 10 million users. How can we find coders for my project? But lots of time there is lack of contribution apart from the lead? We need to engage people to create technologies for communities. Hackathon can be problematic without thinking beyond the specific event. Need to consider small grant, and also thinking about people somewhere between code and use. Maps might be the data visualisation type that change people behaviour most often. Maybe a tool to make things easy – it should be a map? Website like timby.org can allow people to tell their story. CartoDB also make it possible for people to take data and show it in different ways.

Discussion: getting to the idea is possible, but then there is a challenge is to keep them engaged. Suggestion: give information back and see the value in information. Need to have feedback loop for people to see what they learned, building expertise, A personal journey of learning is important.

The final plenary was Reaching audiences through innovations in visualisation for people to act on information, they need to understand it. Visualisation can increase that understanding. Bringing together leading experts and practitioners, this plenary will showcase innovations in data visualisation and application that advance sustainable development.


Janet Ranganathan shown the WRI Resource Watch. There is a gap between data provision and data use – a lot of open data portals – you get lost. Need to help people to listen to the signal of the planet and act on it. The opportunity is the whole data that is coming out. Based on global forest watch, they focus on the Nexus: water, food, energy, forests. Provide access to data, but also analysis and then sharing the insights.

Craig Mills talked about visuality experience – it’s not data revolution but it’s about presenting information. Need to create fusion between data and story telling. He provided a walk through of ResearchWatch showing how to make information personal and need to redefine of displaying maps – following convention from GIS. There are ways of thinking about visualisation principles. Stop to think about sharing – see the connection before things are displayed on the map. How to get your data to where people are already using. Make it easy to embed in other places – make a big share button. Use emotions and feeling in terms of connection. Context is the secret – expect people to use things on phones, or tablet. Actually thinking about information as mobile first. Also voice activated and SMS and we can reach everyone

Angela Oduor Lungati – Ushahidi – explore the marginalisation is not from scarcity, but poverty, power and inequality (UN Human Development Report 2006). She show how privatisation of water reduce access to water. Usahidi is a platform that allow ordinary citizens to raise their voice and share information. Information can use SMS, web or smartphone – whatever people have. Allowing data collection, management, visualisation and alerts. Pothole theory – there is an event that trigger your action – and need to be local and personal. Kathmandu Living Labs use Ushahidi to find proper assessment in QuakeMap.org. The tool is also used by theLouisiana Bucket Brigade. Usahidi was used by 18M people and 159 countries, and it is made in Africa. Suggest the metaphor of data = seeds; land = platforms and farmers are the people. Technology just 10% of the solution.

Trista Patterson – NewMedia Lab at GRID-Arendal – history of many reports and viral graphics. NewMedia Lab is to invigorate radical experimentation & rapid prototyping – moving beyond paper focus design. Connecting people with data, the audience and emotions. Dependence on technology increase, instead of envisioning what it is that we deeply need most – our need for envisioning, and we need to exercise this capability. They explore relationship with artists, envisioning with children. Data + emotions = decisions and actions. Iterations and endurance in experimentations.

The last side event Citizen Scientists and their role in monitoring of local to global environmental change – explored project in Abu Dhabi that involves divers in recording data about sharks and a project in Bahrain – regional movement of Arab Youth Climate Movement. Citizen Science programme, choose to use iNaturalist in Bahrein as a way to make people less blind to nature. Use iNaturalist, small session open to the public in a natural world heritage site – introduce the concept of citizen science which is not known to the public, and let them use the app to help to identify species, and would like to see people engage from a younger age in citizen science. Challenge in Abu Dhabi with an engagement with divers monitoring sharks when the Gulf is major exporter of fins. Initiatives take time to develop, and in Abu Dhabi they have challenge that divers are ex-pat who stay for some years and then leave, so require to continue to recruit people.

Eye on Earth (Day 2 – Morning) – moving to data supply

Eye on Earth (Day 2 – Morning) – moving to data supply The second day of Eye on Earth moved from data demand to supply . You can find my posts from day one, with the morning and the afternoon sessions. I have only partial notes on the plenary Data Revolution-data supply side, although I’ve posted separately the slides from my talk. The description of the session stated: The purpose of the the session is to set the tone and direction for the “data supply” theme of the 2nd day of the Summit. The speakers focused on the revolution in data – the logarithmic explosion both in terms of data volume and of data sources. Most importantly, the keynote addresses will highlight the undiscovered potential of these new resources and providers to contribute to informed decision-making about environmental, social and economic challenges faced by politicians, businesses, governments, scientists and ordinary citizens.

The session was moderated by Barbara J. Ryan (GEO) the volume of data that was download in Landsat demonstrate the information revolution. From 53 scene/day to 5700 scene/day once it became open data – demonstrate the power of open. Now there are well over 25 million downloads a year. There is a similar experience in Canada, and there are also new and innovative ways to make the data accessible and useful.

The first talk was from Philemon Mjwara (GEO), the amount of data is growing and there is an increasing demand for Earth Observations, but even in the distilled form of academic publications there is an explosion and it’s impossible to read everything about your field. Therefore we need to use different tools – search engines, article recommendation systems. This is also true for EO data – users need the ability to search, then process and only then they can use the information. This is where GEO come in. It’s about comprehensive, effective and useful information. GEO works with 87 participating organisations. They promote Open Data policies across their membership, as this facilitate creation of a global system of systems (GEOSS). GEOSS is about supply, and through the GEO infrastructure it can be share with many users. We need to remember that the range of sources is varied: from satellite, to aerial imagery, to under-sea rovers. GEO works across the value chain – the producers, value added organisation and the users. An example of this working is in analysis that helps to link information about crops to information about potential vulnerability in food price.

Mary Glackin (the Weather Corporation), reviewed how weather data is making people safer and business smarter. The Weather Company is about the expression of climate in the patterns of weather. Extreme events make people notice. Weather is about what happen in the 100 km above the Earth surface, but also the 3.6 km average depth of the oceans, which we don’t properly observe yet and have an impact on weather. There are 3 Challenges: keep people safe, helping businesses by forecasting, and engage with decision makers. Measuring the atmosphere and the oceans is done by many bodies which go beyond official bodies – now it includes universities, companies, but also citizens observations which is done across the world (through Weather Underground). The participants, in return, receive a localised forecast for their area and details of nearby observations. It’s a very large citizen science project, and engagement with citizen scientists is part of their work. Forecasting require complex computer modelling – and they produce 11 Billion forecasts a day. Engaging decision makers can be individual fisherman who need to decide if to go out to sea or not. There is a need for authoritative voice that create trust when there are critical issues such as response to extreme events. Another example is the use of information about turbulence from airplanes which are then used to improve modelling and provide up to date information to airlines to decide on routes and operations. Technology is changing – for example, smartphones now produce air pressure data and other sensing abilities that can be used for better modelling. There are policies that are required to enable data sharing. While partnerships between government and private sector companies. A good example is NOAA agreeing to share all their data with cloud providers (Microsoft, Amazon, Google) on the condition that the raw data will be available to anyone to download free of charge, but the providers are free to create value added services on top of the data.

Next was my talk, for which a summary and slide are available in a separate post.

Christopher Tucker, and Mae Jemison. [I’ll revise the blog with notes later]

After the plenary, the session Data for Sustainable Development was building on the themes from the plenary. Some of the talks in the session were:

Louis Liebenberg presented cybertracker – showing how it evolved from early staged in the mid 1990s to a use across the world. The business model of cybertracker is such that people can download it for free, but it mostly used off-line in many places, with majority of the users that use it as local tool. This raise issues of data sharing – data doesn’t go beyond that the people who manage the project. Cybertracker address the need to to extend citizen science activities to a whole range of participants beyond the affluent population that usually participate in nature observations.

Gary Lawrence – discussed how with Big Data we can engage the public in deciding which problem need to be resolved – not only the technical or the scientific community. Ideas will emerge within Big Data that might be coincident or causality. Many cases are coincidental. The framing should be: who are we today? what are we trying to become? What has to be different two, five, ten years from now if we’re going to achieve it? most organisations don’t even know where they are today. There is also an issue – Big Data: is it driven by a future that people want. There are good examples of using big data in cities context that take into account the need of all groups – government, business and citizens in Helsinki and other places.

B – the Big Data in ESPA experience www.espa.ac.uk – data don’t have value until they are used. International interdisciplinary science for ecosystems services for poverty alleviation programme. Look at opportunities, then the challenges. Opportunities: SDGs are articulation of a demand to deliver benefits to societal need for new data led solution for sustainable development, with new technologies: remote sensing / UAVs, existing data sets, citizen science and mobile telephony, combined with open access to data and web-based applications. Citizen Science is also about empowering communities with access to data. We need to take commitments to take data and use it to transforming life.

Discussion: lots of people are sitting on a lots of valuable data that are considered as private and are not shared. Commitment to open data should be to help in how to solve problems in making data accessible and ensure that it is shared. We need to make projects aware that the data will be archived and have procedures in place, and also need staff and repositories. Issue is how to engage private sector actors in data sharing. In work with indigenous communities, Louis noted that the most valuable thing is that the data can be used to transfer information to future generations and explain how things are done.

Eye on Earth Summit 2015 talk – Extreme Citizen Science – bridging local & global

Thanks to the organisers of the Eye on Earth Summit, I had an opportunity to share the current state of technological developments within the Extreme Citizen Science (ExCiteS) group with the audience of the summit: people who are interested in the way environmental information sharing can promote sustainability.

The talk, for which the slides are provided below is made of two parts. The first is an overview of current citizen science and where are the extremities of current practice, and the second covering the current state of development of the technological work that crease the tools, methodologies and techniques to allow any community, regardless of literacy, to develop their own citizen science projects.

I have addressed the issues at the beginning of the talk in earlier talks (e.g. the UCL Lunch Hour Lecture) but now found a way to express them in several brief slides which demonstrate the changes in science and education levels in the general population as an important trends that powers current citizen science. If we look at early science (roughly until the early 19th Century), professional science (roughly from the middle of the 19th Century all the way throughout the 20th Century) and the opening of science in the past decade, we can see an ongoing increase in the level of education in the general population, and this leads to different types of participation in citizen science – you couldn’t expect more than methodological basic data collection  by volunteers in the early 20th Century, while today you can find many people who have good grasp of scientific principles and are inherently sharing data that they are interested in.

After exploring the limits of current citizen science in terms of the scientific process and levels of education that are expected from participants, I turn to our definition of extreme citizen science, and then focus on the need to create technologies that are fit for use within participatory processes that take into account local and cultural sensitivities, needs and wishes about the use of the data. In particular, I’m explaining the role of Sapelli and its use with participatory processes in the Congo basin, Amazon and potentially in Namibia. I then explain the role of GeoKey in providing an infrastructure that can support community mapping, ending with the potential of creating visualisation tools that can be used by non-literate participants.

The slides are available below.

Environmental Citizen Science overview and interview with Tom Wakeford

This short video (6 minutes) give an introduction to the findings from a recent report on environmental citizen science and discussion with Tom Wakeford (Coventry University) about core aspects of citizen science and its potential in terms of policy, especially when it relates to environmental issues. The report can be found on the European Commission website, and is part of the work of the Science Communication Unit at the University of the West of England.
I was very pleased to see that my classification of levels of engagement in citizen science appear in this video (and in the report).

Citizen Cyberlab Summit (day 2)

DSCN1165The second day of the Citizen Cyberlab Summit followed the same pattern of the first day: Two half day sessions, in each one short presentations from guest speakers from outside the project consortium, followed by two demonstrations of specific platform, tool, pilot or learning, and ending with discussion in groups, which were then shared back.

The first session started with History of Citizen Sciences – Bruno Strasser (Uni Geneva) – looking at both practical citizen science and the way it is integrated into the history of science. The Bioscope is a place in Geneva that allowing different public facing activities in the medical and life science: biodiversity, genetic research etc. They are developing new ways of doing microscopy – a microscope which is sharing the imagery with the whole room so it is seen on devices and on turning the microscope from solitary experience to shared one. They are involved in biodiversity research that is aimed to bar-coding DNA of different insects and animals. People collect data, extract DNA and sequence it, and then share it in a national database. Another device that they are using is a simple add-on that turns a smartphone can be turned into powerful macro camera, so children can share images on instagram with bioscope hashtag. They also do ‘Sushi night’ where they tell people what fish you ate if at all…
This link to a European Research Council (ERC) project  – the rise of citizen sciences – on the history of the movement. Is there something like ‘citizen sciences’? From history of science perspective, in the early 20c the amateur scientist is passing and professionals are replacing it. He use a definition of citizen science as amateurs producing scientific knowledge – he is not interested in doing science without the production of knowledge. He noted that there are a lot of names that are used in citizen science research. In particular, the project focus is on experimental sciences – and that because of the laboratory revolution of the 1930s which dominated the 20th century. The lab science created the divide between the sciences and the public (Frankenstein as a pivotal imagery is relevant here). Science popularisation was trying to bridge the gap to the public, but the rise in experimental sciences was coupled with decline of public participation. His classification looks at DIYbio to volunteer computing – identifying observers, analysers etc. and how they become authors of scientific papers. Citizen science is taken by the shift in science policy to science with and for society. Interest in the promises that are attached to it: scientific, educational (learning more about science) and political (more democratic). It’s interesting because it’s an answer to ‘big data’, to the contract of science and society, expertise, participation and democratisation. The difference is demonstrated in the French response following Chernobyl in 1986, with presentation by a leading scientists in France that the particle will stop at the border of France, compared that to Deep Horizon in 2010 with participatory mapping through public lab activities that ‘tell a different story’. In the project, there are 4 core research question: how citizen science transform the relationship between science and society? who are the participants in the ‘citizen sciences’ – we have some demographic data, but no big picture – collective biography of people who are involved in it. Next, what is the ‘moral economies’ that sustain the citizen sciences? such as the give and take that people get out of project and what they want. Motivations and rewards. Finally, how do citizen sciences impact the production of knowledge? What is possible and what is not. He plan to use approaches from digital humanities process. He will build up the database about the area of citizen science, and look at Europe, US and Asia. He is considering how to run it as participatory project. Issues of moral economies are demonstrated in the BOINC use in commercial project. 

Lifelong learning & DIY AFM – En-Te Hwu (Edwin) from Academia Sinica, Taiwan). There are different ways of doing microscopy at different scales – in the past 100 years, we have the concept of seeing is believing, but what about things that we can’t see because of the focused light of the microscope – e.g. under 1 micron. This is possible with scanning electron microscope which costs 500K to 2M USD, and can use only conductive samples, which require manipulation of the sample. The Atomic Force Microscope (AFM) is more affordable 50K to 500K USD but still out of reach to many. This can be used to examine nanofeatures – e.g. carbon nanotubes – we are starting to have higher time and spatial resolution with the more advanced systems. Since 2013, the LEGO2NANO project started – using the DVD head to monitor the prob and other parts to make the AFM affordable. They put an instructable prototype that was mentioned by the press and they called it DIY AFM. They created an augmented reality tool to guide people how to put the device together, and it can be assembled by early high school students – moving from the clean room to the class room.  The tool is being used to look at leafs, CDs – area of 8×8 microns and more. The AFM data can be used with 3D printing – they run a summer school in 2015 and now they have a link to LEGO foundation. They are going through a process of reinventing the DIY AFM, because of patenting and intellectual property rights (IPR) – there is a need to rethink how to do it. They started to rethink the scanner, the control and other parts. They share the development process (using building process platform of MIT media lab). There is a specific application of using the AFM for measuring air pollution at PM2.5. using a DVD – exposing the DVD by removing the protection layer, exposing it for a period of time and then bringing it and measuring the results. They combined the measurements to crowdcrafting for analysis. The concept behind the AFM is done by using LEGO parts, and scanning the Lego points as a demonstration, so students can understand the process. 

wpid-wp-1442566370890.jpgThe morning session included two demonstrations. First, Creativity in Citizen Cyberscience – Charlene Jennett  (UCLIC, UCL) – Charlene is interested in psychological aspects of HCI. Creativity is a challenge in the field of psychology. Different ideas of what is creativity – one view is that it’s about eureka moment as demonstrated in Foldit breakthrough. However, an alternative is to notice everyday creativity of doing thing that are different, or not thought off original. In cyberlab, we are looking at different projects that use technologies and different context. In the first year, the team run interviews with BOINC, Eyewire, transcribe Bentham, Bat Detective, Zooniverse and Mapping for Change – a wide range of citizen science projects. They found many examples  – volunteers drawing pictures of the ships that they were transcribing in Old Weather, or identifying the Green Peas in Galaxy zoo which was a new type of galaxy. There are also creation of chatbots about their work -e.g. in EyeWire to answer questions, visualisation of information, creating dictionaries and further information. The finding showed that the link was about motivation leading to creativity to help the community or the project. They created the model of linking motivation, learning through participation, and volunteer identity that lead to creativity. The tips for projects include: feedback on project progress at individual and project level, having regular communication – forum and social media, community events – e.g. competitions in BOINC, and role management – if you can see someone is doing well, then encourage them to take more responsibility. The looked at the different pilots of Cyberlab – GeoTag-X, Virtual Atom Smasher, Synthetic Biology through iGEM and Extreme Citizen Science. They interview 100 volunteers. Preliminary results – in GeoTag-X, the design of the app is seen as the creative part, while for the analysts there are some of the harder tasks – e.g. the georeferencing of images and sharing techniques which lead to creative solutions. In the iGEM case they’ve seen people develop games and video. in the ExCiteS cases, there is DIY and writing of blog posts and participants being expressive about their own work. There are examples of people creating t-Shirt, or creating maps that are appropriate for their needs.They are asking questions about other projects and how to design for creativity. It is interesting to compare the results of the project to the definition of creativity in the original call for the project. The cyberlab project is opening up questions about creativity more than answering them. 

wpid-wp-1442679548581.jpgPreliminary Results from creativity and learning survey – Laure Kloetzer (university of Geneva). One of the aims of Citizen Cyberlab was to look at different aspects of creativity. The project provided a lot of information from a questionnaire about learning and creativity in citizen science. The general design of the questionnaire was to learn the learning outcomes. Need to remember that out of the whole population, small group participate in citizen science – and within each project, there is a tiny group of people that do most of the work (down to 16 in Transcribed Bentham) and the question of how people turn from the majority, who do very little work to highly active participants is unknown, yet. In Citizen Cyberlab we carried out interviews with participants in citizen science projects, which led to a typology of learning outcomes – which are lot wider than those that are usually expected or discussed in the literature – but they didn’t understand what people actually learn. The hypothesis is that people who engage with the community can learn more than those that doesn’t – the final questionnaire of the project try to quantify learning outcomes (informal learning in citizen science – ILICS survey). The questionnaire was tested in partial pilot. Sent to people in volunteer computing, volunteer thinking and others types. They had about 700 responses, and the analysis only started. Results – age group of participants is diverse from 20-70, but need to analyse it further according to projects. Gender – 2/3 male, third female, and 20% of people just have high school level of education, with 40% with master degree or more – large minority of people have university degree. They got people from 64 countries – US, UK, Germany and France are the main ones (the survey was translated to French). Science is important to most, and a passion for half, and integrated in their profession (25% of participants). Time per week – third of people spend less than 1 hour, and 70% spend 1-5 hours – so the questionnaire captured mostly active people. Results on learning – explore feeling, what people learn, how they learn and confidence (based on the typology from previous stages of the project). The results show that – people who say that they learn something to a lot, and most people accept that they learn on-topic knowledge (about the domain itself – 88%), scientific skills (80%), technological skills (61%), technical skills (58%), with political, collaboration skills and communication skills in about 50% of the cases. The how question – people learn most from project documentation (75%) but also by external resources (70%). Regarding social engagement, about 11% take part in the community, and for 61% it’s the first time in their life that they took such a role. There are different roles – translation, moderating forums with other things in the community that were not recognised in the questionnaire. 25% said that they met people online to share scientific interests – opportunity to share and meet new people. Learning dimensions and types of learners – some people feel that they learn quite a lot about various things, while others focus on specific types of learning. wpid-wp-1442679528037.jpgPrincipal Component Analysis show that learner types correlate with different forms of engagement – more time spent correlate to specific type of learner. There are different dimensions of learning that are not necessarily correlate. The cluster analysis show about 10 groups – people who learn a lot on-topic and about science with increase self-confidence. Second group learn on topic but not much confidence. Group 3, like 2 but less perception of learning. Group 4 don’t seem to learn much but prefer looking at resources. 5 learn somewhat esp about computers. 6 learn through other means. 7 learn by writing and communicating, collaborating and some science. 8 learn only about tools, but have general feeling of learning. 9 learn on topic but not transferable and 10 learn a lot on collaboration and communication – need to work more on this, but these are showing the results and the raw data will be shared in December. 

DSCN1160Following the presentation, the group discussion first explored examples of creativity from a range of projects. In crowdcrafting, when people are not active for a month, they get email with telling them that they will be deleted – one participant created activities that link to the project – e.g. tweeting from a transcriptions from WW I exactly 100 years after it happen. In Cornell Lab of Ornithology, volunteers suggest new protocols and tasks about the project – new ways of modifying things. In the games of ScienceatHome are targeted specifically to explore when problem solving become creative – using the tools and explaining to the researchers how they solve issues. In WCG one volunteered that create graphics from the API that other volunteers use and expect now to see it as part of the project. There is a challenge to project coordinators what to do with such volunteers – should they be part of the core project?
Next, there are questions about roles – giving the end users enough possibilities is one option, while another way is to construct modularising choices, to allow people to combine them in different ways. In ScienceatHome they have decided to put people into specific modes so consciously changing activities. There is wide variety of participants – some want to be fairly passive and low involvement, while other might want to do much more. Also creativity can express itself in different forms, which are not always seem linked to the project. The learning from Citizen Cyberlab is that there isn’t simple way of linking creativity and capture it in computer software, but that you need organisational structure and most importantly, awareness to look out for it and foster it to help it develop. Having complementarity – e.g. bringing game people and science people to interact together is important to creativity. Another point is to consider is to what degree people progress across citizen science projects and type of activities – the example of Rechenkraft.net that without the hackspace it was not possible to make things happen. So it’s volunteers + infrastructure and support that allow for creativity to happen. There are also risks – creating something that you didn’t know before – ignorance – in music there isn’t much risk, but in medical or synthetic biology there can be risks and need to ask if people are stopping their creativity when they see perceived risks.

wpid-wp-1442679513070.jpgThe final session of the summit was dedicated to Evaluation and Sustainability. Starting with The DEVISE project – Tina Philips (Cornell Lab of Ornithology). Tina is involved in the public engagement part of Cornell Lab of Ornithology . Starting from the work on the 2009 of the Public Participation in Scientific Research (PPSR) report – the finding from the CAISE project that scarcity of evaluations, higher engagement suggested deeper learning, and need for a more sensitive measures and lack of overall finding that relate to many projects. The DEVISE project (Developing, Validating, and Implementing Situated Evaluation Instruments) focused on evaluation in citizen science overall – identifying goals and outcomes, building professional opportunities for people in the field of informal learning, and creating a community of practice around this area. Evaluation is about improving the overall effectiveness of programmes and projects. Evaluation is different from research as it is trying to understand strengths and weaknesses of the specific case and is less about universal rules – it’s the localised learning that matter. In DEVISE, they particularly focused on individual learning outcomes. The project used literature review, interviews  with participants, project leaders and practitioners to understand their experience. They looked at a set of different theories of learning. This led to a framework for evaluating PPSR learning outcomes. The framework includes aspects such as interest in science & the environment, self efficacy, motivation, knowledge of the nature of science, skills of science inquiry, and behaviour & stewardship. They also develop scales – short surveys that allow to examine specific tools – e.g. survey about interest in science and nature or survey about self-efficacy for science. There is a user guide for project evaluators that allow to have plan, implement and share guidance. There is a logic model for evaluation that includes Inputs, activities, outputs, short-term and long-term impacts. It is important to note that out of these, usually short and long terms outcomes are not being evaluated. Tina’s research looked at citizen science engagement, and understand how they construct science identity. Together with Heidi Ballard, they looked at contributory, collaborative and co-created projects – including Nestwatch, CoCoRaHS, and Global Community Monitor. They had 83 interviews from low , medium and high contributors and information from project leaders. The data analysis is using qualitative analysis methods and tools (e.g. Nvivo). The interview asked about engagement and what keep participants involved and asking about memorable aspects of their research involvement. There are all sort of extra activities that people bring into interviews – in GCM people say ‘it completely changes the way that they respond to us and actually how much time they even give us because previously without that data, without something tangible’ – powerful experiences through science. The interviews that were coded show that data collection, communicating with others and learning protocols are very common learning outcomes. About two-third of interviewees are also involved in exploring the data, but smaller group analyse and interpret it. Majority of people came with high interest in science, apart of the people who are focused on local environmental issues of water or air quality. Lower engagers tend to feel less connected to the project – and some crave more social outlets. The participants have a strong understanding of citizen science and their role in it. Data transparency is both a barrier and facilitator – participants want to know what is done with their data. QA/QC is important personally and organisationally important. Participants are engaged in wide range of activities beyond the project itself. Group projects may have more impact than individual projects.
Following the presentation, the discussion explore the issue of data – people are concerned about how the data is used, and what is done with it even if they won’t analyse it themselves. In eBird, you can get your raw data, and checking the people that used the data there is the issue of the level in which those who download the data understand how to use it in an appropriate way. 

wpid-wp-1442679499689.jpgThe final guest presentation was Agroecology as citizen science – Peter Hanappe (Sony Computer Science Lab, Paris).  Peter is interested in sustainability, and in previous projects he was involved in working on accessibility issues for people who use wheelchair, the development of NoiseTube, or porting ClimatePrediction BOINC framework to PlayStation, and reducing energy consumption in volunteer computing. In his current work he looks at sustainability in food systems. Agroecology is the science of sustainable agriculture, through reducing reliance on external inputs – trying to design productive ecosystems that produce food. Core issues include soil health and biodiversity, with different ways of implementing systems that will keep them productive. The standard methods of agriculture don’t apply, and need to understand local conditions and the practice of agroecology is very knowledge intensive. Best practices are not always studied scientifically – with many farms in the world that are small (below 2 hectares, 475 millions farms across the world). There are more than 100M households around the world that grow food.  This provide the opportunity for citizen science – each season can be seen as an experiment, with engaging more people and asking them to share information so the knowledge slowly develops to provide all the needed details. Part of his aim is to develop new, free tools and instruments to facilitate the study of agroecology. This can be a basic set with information about temperature and humidity or more complex. The idea to have local community and remote community that share information on a wiki to learn how to improve. Together with a group of enthusiasts that he recruited in Paris, they run CitizenSeeds where they tried different seeds in a systematic way – for example, with a fixed calendar of planting and capturing information People took images and shared information online. The information included how much sunlight plants get and how much humidity the soil have. on p2pfoodlab.net they can see information in a calendar form. They had 80 participants this year. Opportunity for citizen science – challenges include community building, figuring out how much of it is documentation of what worked, compared to experimentation – what are the right way to carry out simple, relevant, reproducible experiments. Also if there is focus on soil health, we need multi-year experiments.  

I opened the last two Demonstrations of the session with a description of the 
Extreme Citizen Science pilots – starting similarly to the first presentation of the day, it is useful to notice the three major period in science (with regard to public participation). First, the early period of science when you needed to be wealthy to participate – although there are examples like Mary Anning, who. for gender, religion and class reasons was not accepted within the emerging scientific establishment as an equal, and it is justified to describe her as citizen scientists, although in full time capacity. However, she’s the exception that point to the rule. More generally, not only science was understood by few, but also the general population had very limited literacy, so it was difficult to engage with them in joint projects. During the period of professional science, there are a whole host of examples for volunteer data collection – from phenology to meteorology and more. As science became more professional, the role of volunteered diminished, and scientists looked for automatic sensors as more reliable mean to collect information. At the same time, until the late 20th century, most of the population had limited education – up to high school mostly, so the tasks that they were asked to perform were limited to data collection. In the last ten years, there are many more people with higher education – especially in industrialised societies, and that is part of the opening of citizen science that we see now. They can participate much more deeply in projects.
Yet, with all these advances, citizen science is still mostly about data collection and basic analysis, and also targeted at the higher levels of education within the population. Therefore, Extreme Citizen Science is about the extremities of citizen science practice – engage people in the whole scientific process, allow them to shape data collection protocols, collect and analyse the data, and use it in ways that suit their goals. It is also important to engage people from all levels of literacy, and to extend it geographically across the world.
The Extreme Citizen Science (ExCiteS) group is developing methodologies that are aimed at facilitating this vision. Tool like GeoKey, which is part of the Cyberlab project, facilitate community control over the data and decision what information is shared and with whom. Community Maps, which are based on GeoKey are way to allow community data collection and visualisation, although there is also a link to EpiCollect, so mobile data collection is possible and then GeoKey managed the information.
These tools can be used for community air quality monitoring, using affordable and accessible methods (diffusion tubes and borrowed black carbon monitors), but also the potential of creating a system that will be suitable for people with low level of literacy. Another pilot project that was carried out in Cyberlab included playshops and exploration of scientific concepts through engagement and play. This also include techniques from Public Lab such as kite and balloon mapping, with potential of linking the outputs to community maps through GeoKey. 

 Finally, CCL Tracker was presented by Jose Luis Fernandez-Marquez (CERN) – the motivations to create the CCL tracker is the need to understand more about participants in citizen cyberscience projects and what they learn. Usual web analytics  provide information about who is visiting the site, how they are visiting and what they are doing. Tools like Google analytics – are not measuring what people do on websites. We want to understand how the 20% of the users doing 80% of the work in citizen cyberscience projects and that require much more information. Using an example of Google Analytics from volunteer computing project, we can see about 16K sessions, 8000 users, from 108 countries and 400 sessions per day. Can see that most are males – we can tell which route they arrived to the website, etc. CCL tracker help to understand the actions performed in the site and measure participants contribution. Need to be able to make the analytics data public and create advanced data aggregation – clustering it so it is not disclosing unwanted details about participants. CCL tracker library work together with Google tag manager and Google analytics. There is also Google Super Proxy to share the information. 

Citizen Cyberlab Summit (day 1)

wpid-wp-1442503181050.jpgThe Citizen Cyberlab Summit is the final event of the Citizen Cyberlab project. The name might sound grand, but the event itself was fairly intimate and focused, with about 40 participants from across the world. The aim of the event was to share the learning from the project and compare them to similar activities around the world. It also provided an opportunity to consider, with experts from different areas, the directions that the project partners should progress beyond the specific ‘deliverables’ (outcomes and outputs) of the project. The meeting was held in the Confucius institute of the University of Geneva which has a mission to improve scientific diplomacy and international links between researchers, so it was a suitable venue for the such international scientific meeting.

 Introduction to Citizen Cyberlab was provided by Ariel Lindner (UPD) who is the main project leader. He noted that the starting point of citizen cyberlab is that we know that people learn better by doing, and that working with the public is also beneficial for scientists – both for becoming aware of public concerns as well as the moral obligation to share the results of research with those who fund it.  The citizen cyberlab project, which is in its final months, was based on 3 parts – platforms, pilots, and tools. Platforms that are aimed at lowering the barriers for participation for scientists and citizens (computation and participation platforms). The platforms are tested through pilot projects, which are then evaluated for creativity and learning – exploring learning behaviour, creativity and community engagement. We aim to share the successful experiences but also the challenges that emerged through the various activities. In the computation platforms, we developed CitizenGrid is aimed to allow running cloud-based projects; RedWire, a new way to consider game design – creating an open source game engine with open game analytics (the ability to measure what people do with the games). Example of this was in the development of science games; GeoKey is the final platform, and it allow people to share their concerns and control information. The project pilots included Virtual Atom Smasher which is about learning particle physics and helping scientists; GeoTag-X at UNITAR helping in disaster response; SynBio4All which open up synthetic biology to wider audience – with games such as Hero Coli and a MOOC on DIY synthetic biology (through iGEM) – with activities around ‘the smell of us’ about the odour that people emit and identifying the bacteria that influence it. L’Oréal is interested in developing this research further; There are several Extreme Citizen Science pilots, too. The tools that were developed in the project included creativity tools such as IdeaWeave.io to explore and develop ideas, monitoring learning (CCL-Tracker), and EpiCollect+ system to allow data collection for a wide range of projects.
Aspects of creativity and understanding what people learn are both complex tasks – understanding the learning had to be done on other communities in citizen science, finally there is specific effort on community engagement through social media and media outlets (YouTube and Audio).

The rest of the event was structured as follows: after two short presentations from guest speakers from outside the project consortium, two demonstrations of specific platform, tool, pilot or learning was followed, and the session ended with discussion in groups, which were then shared back. In all, the summit had 4 such sessions.

wpid-wp-1442502888908.jpgFollowing this introduction, two guests gave Short Talks, first about World Community Grid (WCG) – Juan Hindo (IBM). Juan provided details of WCG which is part of IBM corporate citizenship group. WCG is philanthropic programme that support participation in science through distributed computing to allow scientists to access large scale computing by using unused processing in computers and mobile devices. The projects can be ‘the biggest and most fundamentally important activities in labs’ according to researchers who participate in the programme. Examples of success include new solar materials from Harvard university researchers, with thousands of candidate materials. Other breakthroughs happened in childhood cancer research and computing for clean water that was led by Tshinghua University in China – exploring the use of nano-tubes for water filtration. WCG are promoting Open Science – ask researcher to make the data publicly available, focus on humanitarian research, real tangible science, with IBM support. Using the corporate ability, they get lots of attention in media. They try to engage volunteers as much as possible – they carried out an extensive volunteers study 2 years ago. Demographic – mostly man, technical background, 20-40, who usually volunteer for 5 years, and people join because they want to help science. Learning about the science is a reason to stay. People want to understand the impact of the computations that they perform – beyond just statics and asking information to be understandable. WCG are trying now to build a more diverse volunteer base, more approachable scientific content and articulating the value of contribution. They see opportunity to reach out to young people, women and they try to engage people through the story about the science, and ensuring people that the process is safe – evaluating experience and design to take a short time. They also want to leverage existing volunteers – they set up a recruitment competition for existing volunteers – that led to very few new people joined. They also do use of social media on Twitter, YouTube and Facebook. There is growing engagement with social media, but not enough conversion to volunteering. They also deal with layering of information with researchers, ask for consistent and regular updating on the research and give volunteer control over communication that they receive. Articulating contribution value is to highlight research stories – not just computations and number of volunteers and celebrating and promote scientific success – they lean on networks in IBM to share the word out. The campaign helped in doubling the registration rate to the system. They want to reach more volunteers, and they follow conversion rate – they are missing stories from volunteers and have a volunteer voice, remove barriers to entry, recruitment drive didn’t create. They want to expand research portfolio and want other areas that it can support. 

In the discussion that followed the important of IP, treating volunteers as individuals came up as a topic that worth exploring with volunteer computing project.

wpid-wp-1442566393048.jpgThe next presentation was Science@home –  by Jacob Sherson (University of Aarhus, Denmark). Jacob noted that in citizen science there are different difficulty level and opportunity to user innovation. In Science@home they are trying to extend the range of citizen science involvement with students. They are talking about the creativity research – trying to evaluate creativity with a positivist empirical framework – controlling different variables and evaluating creativity of output according to it. They run scienceathome.org – with 3000 people participating in projects, with experiments ranging from cognitive science, to quantum physics, and business administration – and they have an interdisciplinary team from different areas of research to support the development of the system. An example for the type of project that they deal with is quantum computing – manipulations of electrons – they are sloshing around between states when moving them with laser beams. Using analogies to high school curriculum was useful way to engage participants and make it relevant to their studies. They have discovered that students can understand quantum physics in a phenomenological way through a game interface. They discover that gamers find areas of good region for solutions. The players localised area of the big parameters space – faster than computer simulation. They also studying the formation of strategies in people mind – Quantum Minds. With this programme, they are studying the process of learning the project and mastering it. They looked at the way to people who learn how to solve problems – to see if early performance help to predict the ability to learn the topic. Other games include trying to understand innovations in the Alien Game. They also have behavioural economics game about forming of groups. The educational part is about creativity – thinking of motivations for curriculum and fun with different resources. Game based education is assumed to improve the curriculum and can increase the motivation to learn. The general approach is to provide personalised online learning trajectories – identify types of students and learners and then correlate them and create personalised learning experience. Also want to train researchers to help them explore. 

The next part of the morning session were the 2 Demonstrations starting with EpiCollect – David Aanensen (Imperial College). EpiCollect was created to deal with infectious disease – who, what, where and when – getting the information about genetic make-up of diseases. They realised that there is a generic issue of metadata gathering and the tool evolved into generic forms collection and visualisation tool. The current use of EpiCollect includes a lot of projects in veterinary as GPS monitoring of animals is easier in terms of ethics. It was also used by the Food and Agricultural Organisation (FAO) to monitor the provision of food to communities in different parts of the world. Also used in education projects in Bath university in field courses (building on evolution megalab project to collect information about snails) with students building questionnaire based on the information sheets of the project. They are starting to build longitudinal data. There are projects that link EpiCollect to other systems – such as GeoKey and CartoDB for visualisation.  

Red Wire  was presented by Jesse Himmelstein (University Paris Descartes) -Red Wire is a platform that is aimed at reducing the barrier of creating games for citizen science through a mash-up approach – code and games are open access to encourage reuse. It use functional programming language approach – in a visual programming environment. They are taking metaphors from electronics. There are examples of games that student developed during recent summer schools and other activities. 

CitizenGrid was discussed by John Darlington (Imperial College, London). Citizen Grid is a platform that enables replicating projects on cloud computing, specifically for volunteer computing projects. It can allow unified support to volunteer computing – support for the scientists who are setting a project, but also to the volunteers who want to link to the project. The scientists can map their resources through creation of both client and server virtual machines and register the application. They demonstrated it with projects that also use games – allowing to install the application on local machines or cloud computing.   

wpid-wp-1442502824236.jpgIn the breakout groups, participants discussed the complexity of the platforms and what are the next steps to make them more accessible. For Epicollect, there are challenges of identifying who are the users – they the both the coordinators and the data collectors, and helping them in setting useful project is challenging, especially with the need for usability and user experience expertise. Dealing with usability and user experience is a challenge that is common to such projects. For RedWire, there is a need to help people who do not have any programming experience to develop games, so these are scientists and teachers. Maybe even gemify the game engine with credits to successful game designers who create components that can be remixed. For citizen grid, there is a need for examples of use cases, with currently Virtual Atom Smasher as the main demonstrator.

The afternoon session explored Pilot Projects. CERN@School – Becky Parker (Langton Star Centre) described how she developed, with her students and collaboration with scientists the ability to do science at school. The project is a demonstration how students and teachers can become part of the science community. The project started years ago with students contributing to astrophysics research. The school is involved in fundamental research, with a 17 years old student publishing scientific paper based on theoretical physics research problem that was presented to the students from professional scientists. Her students also put together to put an instrument to detect cosmic rays on the satellite TDS-1. They can see where is their experiment through visualisation over Google Maps that the students developed themselves. Students also created analysis tools for the data. Students can contribute to NASA research on the impact of cosmic rays on International Space Station staff. CERN@School also include experiment in collecting radiation reading which help to map background radiation in the UK (by students at 14-15). Through their work, they discovered that there aren’t many radiation reading in the ocean, and they will do that by mounting a radiation sensor to sea UAV. All this helps students to learn to be scientists. They created the monopole-quest project within the zooniverse projects. It is possible to get young people involved in large scale science projects. It also help to encourage science teachers and to ensure job satisfaction for teachers. The involvement of girls in the project also lead to more participation in science and engineering after school with the school having a disproportionate share of the number of young women who go to study such topics in the UK. 

Rechenkraft.net – From Volunteers to Scientists – Michael Weber (Uni Marburg). Michael describe how volunteers turned to scientists in the area of volunteer computing. Rechenkraft started in 2005 with a forum dedicated to all distributed computing projects around the world, and sharing the information about them among German speaking volunteers. Projects are now being translated to other languages, too. This led to the creation of an organisation, which is now involved in many projects, including climateprediction.net.  volunteers also created monitoring programmes that indicate the process and provide statistics about contributions. They also have yearly face to face gathering of volunteers from across Germany and beyond, with results of creating their own data processing racks and other initiative. Started in electronic sports league but then realised that there are opportunities to assist scientists in developing new projects, and that led to Yoyo@home that will allow the community to help scientists in developing BOINC projects. They regularly participate in conferences and exhibitions to promote the opportunity to other people interested in technology, and they became part of Quake-catcher network. They receive significant press coverage – eventually the city of Marburg (Germany) offered the organisation physical pace that became the Hackspace of the city. Once there is a steady place, they created more sophisticated cluster computers. They also set up the WLAN in the local refugee camp. Finally, they also develop their own scientific project- RNA world which is completely internal project. They encountered problems with very large output files from simulations so they are learning about running distributed computing projects as scientists who use the results and not only as volunteers. They also starting to run different projects about tree health with data recording such as location, photo and plant material.   Similarly, they map protected flowers – all this on volunteer basis. They participate in the effort of developing citizen science strategy 2020 for Germany, and they would like funding to be available to average person so they can participate in projects. There is risk that citizen science will be co-opted by scientists – need to leave space for grass-roots initiatives. There are also barriers for publications. The need for lab results in addition to the simulation encouraged the creation of the wet lab. 

The last short guest talk came from Bernard Revaz who suggested to create Massive Multiplayer Online Science – using game environments like WoW (World of Warcraft) to do science. His aim is inject science into projects such as Eve online – at a given time there are 40,000 users, median age 35, with 50% with degree in science. In Eve online they design an element from the human protein atlas that the gamers will help to classify. The stakeholders in their discussion include scientists,  the gaming company and players and all are very positive about the prospect. In Eve online there are many communities – they are creating a new community of scientists so people join it voluntarily. Working on matching the science tasks to the game narrative and to the game reward system.

After these two guest talks, there were two Demos. 

wpid-wp-1442502761020.jpgFirst, Virtual Atom Smasher (VAS) – Ioannis Charalampidis (CERN) – the VAS is about the way CERN develop the science cycle -observe the situation, lead to theory by theoretical physicists and then carry out experiments to test them. The process includes computer simulations that are explored against experimental data. They are trying to adjust the models until the model reflect the results.VAS evolved from a project by  15 years old student in 2010, who managed to create the best fitting results of a simulation. The VAS is about real cutting edge science, but it is also very challenging and created a game (but don’t use the word game – it’s a simulation). The VAS use CitizenGrid and RedWire for the game and CCL tracker to understand the way people use the platform. The analytics show the impact of training to the desired flow of the game. The VAS combines exploration with opportunities for learning. 

Geotag-X – Eleanor Rusack (UNITAR). This is a platform to crowdsource the analysis of images in humanitarian crises. They usually use satellite imagery to deal with crises, but there are limitations to some images – roofs, clouds etc., and there is a need to know what is going on the ground. The idea is to harvest photos coming from disaster , then analyse them and share the knowledge. A lot of information in photos can be very useful – it’s possible to extract structural information and other details in the image. They got a workflow, who set projects, they then develop the structure of the processing and tutorials, and tools for photo collection tools (from Flickr, Twitter, EpiCollect and Chrome extension). The photos are added to the analysis pool. They have created a project to allow people deal with Yemeni Cultural Heritage at risk as  a result of the way that is happening there. The syste is mostly based on self learning. Geotagging photo is a challenging tasks. It’s a specially an area that need more work. The experts are professionals or academics in specific domain who can help people to design the process, while participants are coming from different backgrounds. They are recruiting people through SciStarter, Mozilla science etc. The keep in touch with online volunteer groups – people who come from SciStarter tend to stay. Digital volunteers also help a lot and they encourage volunteering through presentation, but most important are data sprints. They use evaluation of agreement between analysts – agreement show easy to agree. There is a range of responses to agreement across standard deviation: they identify 3 groups – easy (high  agreement, low standard deviation), mid (high std div and median agreement) and complex (low agreement, low std div). Analysis of images against these agreement level help to improve designs. The want to move the questions up the curve and how to train large number of analysts when project leaders have limited time? 

The follow up discussion explored improvements to VAS – such as integrating arts or linking a BOINC project that will contribute computing resources to the VAS. For Geotag-X, the discussion explored the issue of training – with ideas about involving volunteers in getting the training right, run virtual focus groups or exploring design aspects and collaborations between volunteers.

Beyond quantification: a role for citizen science and community science in a smart city

Arduino sensing in MaltaThe Data and the City workshop will run on the 31st August and 1st September 2015, in Maynooth University, Ireland. It is part of the Programmable City project, led by Prof Rob Kitchin. My contribution to the workshop is titled Beyond quantification: a role for citizen science and community science in a smart city and is extending a short article from 2013 that was published by UCL’s Urban Lab, as well as integrating concepts from philosophy of technology that I have used in a talk at the University of Leicester. The abstract of the paper is:

“When approaching the issue of data in Smart Cities, there is a need to question the underlying assumptions at the basis of Smart Cities discourse and, especially, to challenge the prevailing thought that efficiency, costs and productivity are the most important values. We need to ensure that human and environmental values are taken into account in the design and implementation of systems that will influence the way cities operate and are governed. While we can accept science as the least worst method of accumulating human knowledge about the natural world, and appreciate its power to explain and act in the world, we need to consider how it is applied within the city in a way that does leave space for cultural, environmental and religious values. This paper argues that a specific form of collaborative science – citizen science and community science – is especially suitable for making Smart Cities meaningful and democratic. The paper use concepts from Albert Borgmann’s philosophy of technology – especially those of the Device Paradigm and Focal Practices, to identify the areas were sensing the city can gain meaning for the participants.”

The paper itself can be accessed here.

Other papers from the same workshop that are already available include:

Rob Kitchin: Data-Driven, Networked Urbanism

Gavin McArdle & Rob Kitchin: Improving the Veracity of Open and Real-Time Urban Data

Michael Batty: Data About Cities: Redefining Big, Recasting Small

More details on the workshop will appear on the project website