Citizen Science & Scientific Crowdsourcing – week 2 – Google Local Guides

The first week of the “Introduction to Citizen Science and Scientific Crowdsourcing” course was dedicated to an introduction to the field of citizen science using the history, examples and typologies to demonstrate the breadth of the field. The second week was dedicated to the second half of the course name – crowdsourcing in general, and its utilisation in scientific contexts. In the lecture, after a brief introduction to the concepts, I wanted to use a concrete example that shows a maturity in the implementation of commercial crowdsourcing. I also wanted something that is relevant to citizen science and that many parallels can be drawn from, so to learn lessons. This gave me the opportunity to use Google Local Guides as a demonstration.

My interest in Google Local Guides (GLG) come from two core aspects of it. As I pointed in OpenStreetMap studies, I’m increasingly annoyed by claims that OpenStreetMap is the largest Volunteered Geographical Information (VGI) project in the world. It’s not. I guessed that GLG was, and by digging into it, I’m fairly confident that with 50,000,000 contributors (of which most are, as usual, one-timers), Google created the largest VGI project around. The contributions are within my “distributed intelligence” and are voluntary. The second aspect that makes the project is fascinating for me is linked to a talk from 2007 in one of the early OSM conferences about the usability barriers that OSM (or more general VGI) need to cross to reach a wide group of contributors – basically about user-centred design. The design of GLG is outstanding and shows how much was learned by the Google Maps and more generally by Google about crowdsourcing. I had very little information from Google about the project (Ed Parsons gave me several helpful comments on the final slide set), but by experiencing it as a participant who can notice the design decisions and implementation, it is hugely impressive to see how VGI is being implemented professionally.

As a demonstration project, it provides examples for recruitment, nudging participants to contribute, intrinsic and extrinsic motivation, participation inequality, micro-tasks and longer tasks, incentives, basic principles of crowdsourcing such as “open call” that support flexibility, location and context aware alerts, and much more. Below is the segment from the lecture that focuses on Google Local Guides, and I hope to provide a more detailed analysis in a future post.

The rest of the lecture is available on UCLeXtend.


Defining principles for mobile apps and platforms development in citizen science

Core concepts of apps, platforms and portals for citizen science

In December 2016, ECSA and the Natural History Museum in Berlin organised a  workshop on analysing apps, platforms, and portals for citizen science projects. Now, the report from the workshop with an addition from a second workshop that was held in April 2017 has evolved into an open peer review paper on RIO Journal.

The workshops and the paper came to life thanks to the effort of Soledad Luna and Ulrike Sturm from the Berlin Museum.

RIO is worth noticing: is “The Research Ideas and Outcomes (RIO) journal” and what it is trying to offer is a way to publish outputs of the whole research cycle – from project proposals to data, methods, workflows, software, project reports and the rest. In our case, the workshop report is now open for comments and suggestions. I’ll be interested to see if there will be any…

The abstract reads:

Mobile apps and web-based platforms are increasingly used in citizen science projects. While extensive research has been done in multiple areas of studies, from Human-Computer Interaction to public engagement in science, we are not aware of a collection of recommendations specific for citizen science that provides support and advice for planning, design and data management of mobile apps and platforms that will assist learning from best practice and successful implementations. In two workshops, citizen science practitioners with experience in mobile application and web-platform development and implementation came together to analyse, discuss and define recommendations for the initiators of technology based citizen science projects. Many of the recommendations produced during the two workshops are applicable to non-mobile citizen science project. Therefore, we propose to closely connect the results presented here with ECSA’s Ten Principles of Citizen Science.

and the paper can be accessed here. 

Extreme Citizen Science in Esri ArcNews

The winter edition of Esri ArcNews (which according to Mike Gould of Esri, is printed in as many copies as Forbes) includes an article on the activities of the Extreme Citizen Science group in supporting indigenous groups in mapping. The article highlights the Geographical Information Systems (GIS) aspects of the work, and mentioning many members of the group.

You can read it here:

New paper: Footprints in the sky – using student track logs in Google Earth to enhance learning

screen shot for paperIn 2011-2012, together with Richard Treves, I was awarded a Google Faculty Research Award, and we were lucky to work with Paolo Battino for about a year, exploring how to use Google Earth tours for educational aims. The details of the projects and some reports from the project are available on Richard’s blog, who was leading on many aspects of the work. Now, over 2 years since the end of the project, we have a publication in the Journal of Geography in Higher Education. The paper, titled ‘Footprints in the sky: using student track logs from a “bird’s eye view” virtual field trip to enhance learning’, is now out and describes the methodology that we developed for tracking students’ actions.

The abstract of the paper is:

Research into virtual field trips (VFTs) started in the 1990s but, only recently, the maturing technology of devices and networks has made them viable options for educational settings. By considering an experiment, the learning benefits of logging the movement of students within a VFT are shown. The data are visualized by two techniques: “animated path maps” are dynamic animations of students’ movement in a VFT; “paint spray maps” show where students concentrated their visual attention and are static. A technique for producing these visualizations is described and the educational use of tracking data in VFTs is critically discussed.

The paper is available here, and special thanks to Ed Parsons who advised us during the project.

How geoweb fossils become unusable

Once upon a time, was one of the most popular Web Mapping sites in the UK, competing successfully with the biggest rival at the time, Multimap. Moreover, it was ranked second in The Daily Telegraph list of leading mapping sites in October 2000 and described at ‘Must be one of the most useful services on the web – and it’s completely free. Zoom in on any UK area by entering a place name, postcode, Ordnance Survey grid reference or telephone code.’ It’s still running and because of its legacy, it’s around the 1250 popular website in the UK (though 4 years ago it was among the top 350).

Streetmap 2014

So far, nothing is especially noteworthy – popular website a decade ago replaced by a newer website, Google Maps, which provide better search results, more information and is the de facto  standard for web mapping. Moreover, already in 2006 Artemis Skaraltidou demonstrated that of the UK Web Mapping crop, Streetmap scored lowest on usability with only MapQuest, which largely ignored the UK, being worse.

However, recently, while running a practical session introducing User-Centred Design principles to our MSc in GIS students, I have noticed an interesting implication of the changes in the environment of Web Mapping – Streetmap has stopped  being usable just because it didn’t bother to update its interaction. By doing nothing, while the environment around it changed, it became unusable, with users failing to perform even the most basic of tasks.

The students explored the mapping offering from Google, Bing, Here and Streetmap. It was fairly obvious that across this cohort (early to mid 20s), Google Maps were the default, against which other systems were compared. It was not surprising to find impressions that Streetmap is ‘very old fashioned‘ or ‘archaic‘. However, more interesting was to notice people getting frustrated that the ‘natural’ interaction of zooming in and out using the mouse wheel just didn’t worked. Or failing to find the zoom in and out buttons. At some point in the past 10 years, people internalised the interaction mode of using the mouse and stopped using the zoom in and out button on the application, which explains the design decision in the new Google Maps interface to eliminate the dominant zoom slider from the left side of the map. Of course, Streetmap interface is also not responsive to touch screen interactions which are also learned across applications.

I experienced a similar, and somewhat amusing incident during the registration process of SXSW Eco, when I handed over my obviously old laptop at the registration desk to provide some detail, and the woman was trying to ‘pinch’ the screen in an attempt to zoom in. Considering that she was likely to be interacting with tablets most of the day (it was, after all, SXSW), this was not surprising. Interactions are learned and internalised, and we expect to experience them across devices and systems.

So what’s to learn? while this is another example of ‘Jacob’s Law of Internet User Experience‘ which states that ‘Users spend most of their time on other sites’, it is very relevant to many websites that use Web Mapping APIs to present information – from our own to the Environment Agency What’s in Your Backyard. In all these cases, it is critical to notice the basic map exploration interactions (pan, zoom, search) and make sure that they match common practices across the web. Otherwise, you might end like Streetmap.

Usability, SatNavs and Which?

The Consumers’ Association Which? magazine  is probably not the first place to turn to when you look for usability studies. Especially not if you’re interested in computer technology – for that, there are sources such as PC Magazine on the consumer side, and professional magazines such as Interactions from Association for Computing Machinery (ACM) Special Interest Group on Computer-Human Interaction (SIGCHI).

And yet…

Over the past few years, Which? is reviewing, testing and recommending Satnavs (also known Personal Navigation Devices – PNDs). Which? is an interesting case because it reaches over 600,000 households and because of the level of trust that it enjoys. If you look at their methodology for testing satnavs , you’ll find that it does resemble usability testing – click on the image to see the video from Which? about their methodology. The methodology is more about everyday use and the opinion of the assessors seems to play an important role.

Link to Which Satnav video

Professionals in geographical information science or human-computer interaction might dismiss the study as unrepresentative, or not fitting their ways of evaluating technologies, but we need to remember that Which? is providing an insight into the experience of the people who are outside our usual professional and social context – people who go to a high street shop or download an app and start using it straightaway. Therefore, it’s worth understanding how they review the different systems and what the experience is like when you try to think like a consumer, with limited technical knowledge and understanding of maps.

There are also aspects that puncture the ‘filter bubble‘ of geoweb people – Google Maps are now probably the most used maps on the web, but the satnav application using Google Maps was described as ‘bad, useful for getting around on foot, but traffic information and audio instructions are limited and there’s no speed limit or speed camera data‘. Waze, the crowdsourced application received especially low marks and the magazine noted that it ‘lets users share traffic and road info, but we found its routes and maps are inaccurate and audio is poor‘ (both citations from Which? Nov 2012, p. 38). It is also worth reading their description of OpenStreetMap when discussing map updates, and also the opinions on the willingness to pay for map updates.

There are many ways to receive information about the usability and the nature of interaction with geographical technologies, and some of them, while not traditional, can provide useful insights.

Google Research Award – Identifying Learning Benefits of Google Earth Tours in Education

Image representing Google Earth as depicted in...

It is always nice to announce good news. Back in February, together with Richard Treves at the University of Southampton, I submitted an application to the Google’s Faculty Research Award program for a grant to investigate Google Earth Tours in education. We were successful in getting a grant worth $86,883 USD.  The project builds on my expertise in usability studies of geospatial technologies, including the use of  eye tracking and other usability engineering techniques for GIS and Richard’s expertise in Google Earth tours and education, and longstanding interest in usability issues.

In this joint UCL/Southampton project, UCL will be lead partner and we will appoint a junior researcher for a year to develop run experiments that will help us in understanding of the effectiveness of Google Earth Tours in geographical learning, and we aim to come up with guidelines to their use. If you are interested, let me know.

Our main contact at Google for the project is Ed Parsons. We were also helped by Tina Ornduff and Sean Askay who acted as referees for the proposal.
The core question that we want to address is “How can Google Earth Tours be used create an effective learning experience?”

So what do we plan to do? Previous research on Google Earth Tours (GETs) has shown them to be an effective visualization technique for teaching geographical concepts, yet their use in this way is essentially passive.  Active learning is a successful educational approach where student activity is combined with instruction to enhance learning.  In the proposal we suggest that there is great education value in combining the advantages of the rich visualization of GETs with student activities. Evaluating the effectiveness of this combination is the purpose of the project, and we plan to do this by creating educational materials that consist of GETs and activities and testing them against other versions of the materials using student tests, eye tracking and questionnaires as data gathering techniques.

We believe that by improving the techniques by which spatial data is visualized we are improving spatial information access overall.
A nice aspect of the getting the project funded is that it works well with a project that is led by Claire Ellul and Kate Jones and funded by JISC. The G3 project, or “Bridging the Gaps between the GeoWeb and GIS” is touching on similar aspects and we surely going to share knowledge with them.
For more background on Richard Treves, see his blog (where the same post is published!)