Paper: GeoKey – open infrastructure for community mapping and science

Citizen Cyberlab The special issue of the Human Computation Journal (see the details of the editorial here), summarises the result from the EU FP7 “Citizen Cyberlab” project.

One of the outcomes of the project is the development of the GeoKey platform for participatory mapping. Therefore, a paper that was written with Oliver Roick and Claire Ellul explains the background to the system and its design principles.

The abstract is:

The development of the geospatial web (GeoWeb) over the past decade opened up opportunities for collaborative mapping and large scale data collection at unprecedented scales. Projects such as OpenStreetMap, which engage hundreds of thousands of volunteers in different aspects of mapping physical and human-made objects, to eBird, which records millions of bird observations from across the globe. While these collaborative mapping efforts are impressive in their scale and reach, there is another type of mapping which is localised, frequently carried out over a limited period of time, and aims at solving a specific issue that the people who are living in the locality are facing. These needs are addressed in participatory mapping, which nowadays includes citizen science elements in data collection and management. The paper describes the background and design of a novel infrastructure for participatory mapping and science ‚Äď GeoKey. The paper provides a differentiation between collaborative and participatory mapping, describes the state of the art and several usecases of community mapping, and the architecture of GeoKey, focussing both on the approaches to data capture and subsequent potential to share the data in an open manner where possible. It also describes the design elements that support learning and creativity in these projects.

The paper is open access and free to read, and you can find it at

Citizen Cyberlab – notes from final review (26-27 January, Geneva)

Citizen Cyberlab LogoEvery project ends, eventually. The Citizen Cyberlab project was funded through the seventh¬†framework programme of the European Union (or EU FP7 in short), and run from September 2012 to November 2015. Today marks the final review of the project in with¬†all the project’s partners presenting the work that they’ve done¬†during the project.

wp-1453931121093.jpgThe project had a technical elements throughout its work, with platforms (technologies that provide foundation to citizen science projects), tools (technologies that support projects directly by being part of what volunteers use), and pilots Рprojects that use the technologies from citizen cyberlab as well as from other sources, to carry out citizen science projects. In addition to the platforms, tools or pilots Рthe project used all these elements as the background for a detailed understanding of creativity and learning in citizen cyberscience, which rely on Information and Communication Technologies (ICT). So the evaluation of the pilots and technologies was aimed to illuminate this question.

This post summarises some of the major points from the project. The project produced a system to develop and share research ideas (, a framework for scientific games ( which is accompanied with tools to measure and observe the actions of gamers (, systems for sharing computation resources through virtual machines (through CitizenGrid platform), and a framework to track user actions across systems (CCLTracker), a platform for community mapping (GeoKey), mobile data collection tools (EpiCollect+).

Some of the systems that used these platforms and tools include Mapping for Change Community Maps, CERN Virtual Atom Smasher, and UNITAR Geotag-X.

The RedWire platform supports the development of games and the mixing of code between project (borrowing concepts from synthetic biology to computing!), and as the system encourages open science, even data from the different games can be mixed to create new ones. The integration with player behaviour tracking ability is significant in the use of games for research (so that’s done with RedMatrics). The analytics data is open, so there is a need to take care of privacy issues. An example of the gaming platform is Hero.Coli – a game about synthetic biology.

The GeoKey platform that was developed at UCL ExCiteS is now integrated with Community Maps, ArcGIS Online and can receive data trough Sapelli, EpiCollect or other HTML5 apps (as the air quality app on Google Play shows). The system is progressing and includes an installation package that make it easier to deploy. Within a year, there are about 650 users on the system, and further anonymous contributions, and over 60 mini-sites, many of them ported from the old system. The system is already translated to Polish and Spanish.

The Citizen Grid is a platform that improve volunteer computing, and allow the access to resources in a simplified manner, with launching of virtual machines through a single link. It can use shared resources from volunteers, or cloud computing.

The IdeaWeave system, which is a social network to support the development of ideas and projects, and share information about these projects. The final system supports challenges, badges and awards. They also add project blogging and ability for voting on proposals.

EpiCollect+ is a new implementation of EpiCollect which was supposed to be device independent through HTML5. There are issues with many APIs, and this lead to finding out limitations in different mobile platforms. There are many applications

wp-1453880231866.jpgThe Virtual Atom Smasher application in CERN was redesign with the use of learning analytics, which shown that many people who start engaging with it don’t go through the learning elements and then find the interface confusing, so the restructuring was geared towards this early learning process. The process help people to understand theoretical and experimental physics principles. The system, which . After participants log in, they go through a questionnaire to understand what the participant know, and then go through video and interactive elements that help them to understand the terminology that is needed to use the interface effectively, and the rest of the process supports asking questions in forums, finding further information through links and more. Some of the side projects that were developed from Virtual Atom Smasher include to TooTR framework that supports creating tutorials that are web-based and include videos and interactive parts. During the project, they have attracted 790 registered participants, 43 spent more than 12 hours with the game. Now the game is gaining attention from more scientists who are now seeing that it is worth while to engage with citizen science. The project is fusing volunteer computing and volunteer thinking.

wp-1453882325415.jpgGeoTag-X provides a demonstrator for volunteer thinking, and was developed by UNITAR. It allow the capturing of relevant imagery and pictures from disaster or conflict situations. It support UNITAR humanitarian operations. They wanted to assess if the system is useful. They have 549 registered volunteers, with 362 completing at least one task. GeoTag-X engaged with the humanitarian Geo community Рfor example with GISCorps, UN Volunteers Online, and Humanity Road.

The Synthetic Biology pilot included the development of MOOC that explains the principles of the area, the game Hero.coli, developed a new spectrometer that will be produced at very large scale in India.

wp-1453889426937.jpgOur own extreme citizen science pilots focused on projects that use cyberlab technology, so focusing on air quality monitoring in which we used GeoKey and EpiCollect to record the location of diffusion tubes and the street context in which it was installed. In addition, we included the use of public lab technology for studying the environment, and playshops to explore the exposure to science.

The research into learning and creativity, shown that there is plenty of learning of the ‘on topic’ and the mechanics of the citizen science, with small minority showing deep engagement with active learning. There is variety of learning – personal development – from self-confidence to identity and cultural change; generic knowledge and skills; and finally project specific aspects. The project provides a whole set of methods for exploring citizen science: checklists that can be used to help designing for citizen science learning, surveys, interviews, analysing blogs, user analytics, and lab studies. Some of the interesting finding include: in GeoTag-X, even a complex interface was learnt quite quickly, and connecting emotionally to the issue of humanitarian issue and participation can predict learning. The Virtual Atom Smasher demonstrated that participants learned about the work of scientists and science (e.g. the plenty use of statistics). wp-1453894997879.jpgIn SynBio4All, there was plenty of organisational skills, lab work, scientific communication and deeper contact with science – all through need to involved in a more significant way. The ExCiteS pilots show involvement and emotional learning, and evidence for community ‘hands on’ situated learning with high engagement of participants. There are examples for personal development, scientific literacy and community organisation, hosting workshop and other skills. One of the major achievement of this study is a general survey, which had 925 complete responses and 2500 partial ones – from volunteers across citizen science (80 projects) – ¬†clusters show 25% learn about technology and science skills, 21% learn about the topic and scientific skills, about 20% learn about science skills, but some collaboration and communication, 13% pure on-topic learning. In citizen science, high percentage learn from project documentation, next about 20% learns through the project and some from documentation, about 17% learn from the project and external documentation, next there was a group learning through discussion. Most feel that they learn (86%). learning is not initial motivation, but become an important factors, and also learning about new area of science. Highly engaged volunteers take on specific and various roles – translators, community managers, event organisers etc.

wp-1453931104656.jpgOn the creativity side, interviews provided the richest source of information on creativity and how it is integrated into citizen science.¬†Interviews with 96 volunteers provided one of the biggest qualitative survey in citizen science. Motivations – curiosity, interest in science and desire to contribute to research. They sustained participation due to continued interest, ability, time. The reasons for different audience composition are task time, geography and subject matter. In a lab study, it was shown that citizen cyberscience results are related to immersion in the game. There is also evidence that people are multi-tasking – they have plenty of distractions to the engagement in any given online¬†project. The key finding about creativity include examples in the analysis of the images and geotagging in GeoTag-X. in the Virtual Atom Smasher, adjusting parameters seen as creative, while in SynBio4all the creation of games, or the creation of the MOOC¬†were examples of creativity. In ExCiteS there are photos, drawing, sculptures , blog posts With air quality we’ve seen examples of newsletter, t-shirts, or creating maps. There are routes through the Motivations, learning and creativity. Might need to look at models for people who lead projects. To support creativity face-to-face collaboration is important, allow entry level of volunteers, and provide multiple methods for volunteers to provide feedback.

wp-1453931086530.jpgIn terms of engagement – we carried out ThinkCamp events, linking to existing online communities, working through engagement and participation. Interestingly, analysis of twitter shown following from fellow researchers and practitioners in citizen science.

The citizen cyberlab will now continue as an activity of the university of Geneva – so watch this space!





Citizen Cyberlab Summit (day 1)

wpid-wp-1442503181050.jpgThe Citizen Cyberlab Summit¬†is the final event of the Citizen Cyberlab project. The name might sound¬†grand, but the event itself was fairly intimate and focused, with about 40 participants from across the world. The aim¬†of the event was to share the learning from the project and compare them to similar activities around the world. It also provided an opportunity to consider, with experts from different areas, the directions that the project partners should progress beyond the specific ‘deliverables’ (outcomes and outputs) of the project. The meeting was held in the Confucius institute of the University of Geneva¬†which has a mission to improve scientific diplomacy and international links between researchers, so it was a suitable venue¬†for the such international scientific meeting.

¬†Introduction to Citizen Cyberlab was provided by¬†Ariel Lindner (UPD) who is the main project leader. He noted that the starting point of citizen cyberlab is that we know that people learn better by doing, and that working with the public is also beneficial for scientists – both for becoming aware of public concerns as well as the moral obligation to¬†share the results of research with those who fund it. ¬†The citizen cyberlab project, which is in its final months, was based on 3 parts – platforms, pilots, and tools. Platforms that are aimed at lowering the barriers for participation for scientists and citizens (computation and participation platforms). The platforms are tested through pilot projects, which are then evaluated for creativity and learning – exploring learning behaviour, creativity and community engagement. We aim to share the successful experiences but also the challenges that emerged through the various activities. In the computation platforms, we developed CitizenGrid¬†is aimed to allow running cloud-based projects;¬†RedWire, a new way to consider game design – creating an open source game engine with open game analytics (the ability to measure what people do with the games). Example of this was in the development of science games;¬†GeoKey is the final platform, and it allow people to share their concerns and control information. The project pilots included Virtual Atom Smasher which is about learning particle physics and helping scientists;¬†GeoTag-X at UNITAR helping in disaster response;¬†SynBio4All which open up synthetic biology to wider audience – with games such as Hero Coli and a MOOC on DIY synthetic biology (through iGEM) – with activities around ‘the smell of us’ about the odour that people emit and identifying the bacteria that influence it. L’Or√©al is interested in developing this research further;¬†There are several Extreme Citizen Science pilots, too. The tools that were developed in the project included creativity tools such as to explore and develop ideas, monitoring learning (CCL-Tracker), and EpiCollect+ system to allow data collection for a wide range of projects.
Aspects of creativity and understanding what people learn are both complex tasks – understanding the learning had to be done on other communities in citizen science, finally there is specific effort on community engagement through social media and media outlets (YouTube and Audio).

The rest of the event was structured as follows: after two short presentations from guest speakers from outside the project consortium, two demonstrations of specific platform, tool, pilot or learning was followed, and the session ended with discussion in groups, which were then shared back. In all, the summit had 4 such sessions.

wpid-wp-1442502888908.jpgFollowing this introduction, two guests gave¬†Short Talks, first about¬†World Community Grid (WCG) – Juan Hindo (IBM). Juan provided details of WCG which is part of IBM corporate citizenship group. WCG is philanthropic programme that support participation in science through distributed computing to allow scientists to access large scale computing by using unused processing in computers and mobile devices. The projects can be ‘the biggest and most fundamentally important activities in labs’ according to researchers who participate in the programme. Examples of success include new solar materials from Harvard university researchers, with thousands of candidate materials. Other breakthroughs happened in childhood cancer research and computing for clean water that was led by Tshinghua University in China – exploring the use of nano-tubes for water filtration. WCG are promoting Open Science – ask researcher to make the data publicly available, focus on humanitarian research, real tangible science, with IBM support. Using the corporate ability, they get lots of attention in media. They try to engage volunteers as much as possible – they carried out an extensive volunteers study 2 years ago. Demographic – mostly man, technical background, 20-40, who usually volunteer for 5 years, and people join because they want to help science. Learning about the science is a reason to stay. People want to understand the impact of the computations that they perform – beyond just statics and asking information to be understandable. WCG are trying now to build a more diverse volunteer base, more approachable scientific content and articulating the value of contribution. They see opportunity to reach out to young people, women and they try to engage people through the story about the science, and ensuring people that the process is safe – evaluating experience and design to take a short time. They also want to leverage existing volunteers – they set up a recruitment competition for existing volunteers – that led to very few new people joined. They also do use of social media on Twitter, YouTube and Facebook. There is growing engagement with social media, but not enough conversion to volunteering. They also deal with layering of information with researchers, ask for consistent and regular updating on the research and give volunteer control over communication that they receive. Articulating contribution value is to highlight research stories – not just computations and number of volunteers and celebrating and promote scientific success – they lean on networks in IBM to share the word out. The campaign helped in doubling the registration rate to the system. They want to reach more volunteers, and they follow conversion rate – they are missing stories from volunteers and have a volunteer voice, remove barriers to entry, recruitment drive didn’t create. They want to expand research portfolio and want other areas that it can support.¬†

In the discussion that followed the important of IP, treating volunteers as individuals came up as a topic that worth exploring with volunteer computing project.

wpid-wp-1442566393048.jpgThe next presentation was Science@home Р by Jacob Sherson (University of Aarhus, Denmark). Jacob noted that in citizen science there are different difficulty level and opportunity to user innovation. In Science@home they are trying to extend the range of citizen science involvement with students. They are talking about the creativity research Рtrying to evaluate creativity with a positivist empirical framework Рcontrolling different variables and evaluating creativity of output according to it. They run Рwith 3000 people participating in projects, with experiments ranging from cognitive science, to quantum physics, and business administration Рand they have an interdisciplinary team from different areas of research to support the development of the system. An example for the type of project that they deal with is quantum computing Рmanipulations of electrons Рthey are sloshing around between states when moving them with laser beams. Using analogies to high school curriculum was useful way to engage participants and make it relevant to their studies. They have discovered that students can understand quantum physics in a phenomenological way through a game interface. They discover that gamers find areas of good region for solutions. The players localised area of the big parameters space Рfaster than computer simulation. They also studying the formation of strategies in people mind РQuantum Minds. With this programme, they are studying the process of learning the project and mastering it. They looked at the way to people who learn how to solve problems Рto see if early performance help to predict the ability to learn the topic. Other games include trying to understand innovations in the Alien Game. They also have behavioural economics game about forming of groups. The educational part is about creativity Рthinking of motivations for curriculum and fun with different resources. Game based education is assumed to improve the curriculum and can increase the motivation to learn. The general approach is to provide personalised online learning trajectories Рidentify types of students and learners and then correlate them and create personalised learning experience. Also want to train researchers to help them explore. 

The next part of the morning session were the 2 Demonstrations starting with EpiCollect РDavid Aanensen (Imperial College). EpiCollect was created to deal with infectious disease Рwho, what, where and when Рgetting the information about genetic make-up of diseases. They realised that there is a generic issue of metadata gathering and the tool evolved into generic forms collection and visualisation tool. The current use of EpiCollect includes a lot of projects in veterinary as GPS monitoring of animals is easier in terms of ethics. It was also used by the Food and Agricultural Organisation (FAO) to monitor the provision of food to communities in different parts of the world. Also used in education projects in Bath university in field courses (building on evolution megalab project to collect information about snails) with students building questionnaire based on the information sheets of the project. They are starting to build longitudinal data. There are projects that link EpiCollect to other systems Рsuch as GeoKey and CartoDB for visualisation.  

Red Wire  was presented by Jesse Himmelstein (University Paris Descartes) -Red Wire is a platform that is aimed at reducing the barrier of creating games for citizen science through a mash-up approach Рcode and games are open access to encourage reuse. It use functional programming language approach Рin a visual programming environment. They are taking metaphors from electronics. There are examples of games that student developed during recent summer schools and other activities. 

CitizenGrid was discussed by John Darlington (Imperial College, London). Citizen Grid is a platform that enables replicating projects on cloud computing, specifically for volunteer computing projects. It can allow unified support to volunteer computing Рsupport for the scientists who are setting a project, but also to the volunteers who want to link to the project. The scientists can map their resources through creation of both client and server virtual machines and register the application. They demonstrated it with projects that also use games Рallowing to install the application on local machines or cloud computing.   

wpid-wp-1442502824236.jpgIn the breakout groups, participants discussed the complexity of the platforms and what are the next steps to make them more accessible. For Epicollect, there are challenges of identifying who are the users Рthey the both the coordinators and the data collectors, and helping them in setting useful project is challenging, especially with the need for usability and user experience expertise. Dealing with usability and user experience is a challenge that is common to such projects. For RedWire, there is a need to help people who do not have any programming experience to develop games, so these are scientists and teachers. Maybe even gemify the game engine with credits to successful game designers who create components that can be remixed. For citizen grid, there is a need for examples of use cases, with currently Virtual Atom Smasher as the main demonstrator.

The afternoon session explored Pilot Projects.¬†CERN@School – Becky Parker (Langton Star Centre) described how she developed, with her students and collaboration with scientists¬†the ability to do science at school. The project is a demonstration how students and teachers¬†can¬†become part of the science community. The project started years ago with students contributing to astrophysics research. The school is involved in fundamental research, with a 17 years old student publishing scientific paper based on theoretical physics research problem that was presented to the students from professional scientists. Her students also put together to put an instrument¬†to detect cosmic rays on the satellite TDS-1. They can see where is their experiment through visualisation over Google Maps that the students developed themselves. Students also created analysis tools for the data. Students can contribute to NASA research on the impact of cosmic rays on International Space Station¬†staff. CERN@School also include experiment in collecting radiation reading which help to map background radiation in the UK (by students at 14-15). Through their work, they discovered that there aren’t many radiation reading in the ocean, and they will do that by mounting a radiation sensor to sea UAV. All this helps students to learn to be scientists. They created the monopole-quest project within the zooniverse projects. It is possible to get young people involved in large scale science projects. It also help to encourage science teachers and to ensure job satisfaction for teachers. The involvement of girls in the project also lead to more participation in science and engineering after school with the school having a disproportionate share of the number of young women who go to study such topics in the UK.¬† РFrom Volunteers to Scientists РMichael Weber (Uni Marburg). Michael describe how volunteers turned to scientists in the area of volunteer computing. Rechenkraft started in 2005 with a forum dedicated to all distributed computing projects around the world, and sharing the information about them among German speaking volunteers. Projects are now being translated to other languages, too. This led to the creation of an organisation, which is now involved in many projects, including  volunteers also created monitoring programmes that indicate the process and provide statistics about contributions. They also have yearly face to face gathering of volunteers from across Germany and beyond, with results of creating their own data processing racks and other initiative. Started in electronic sports league but then realised that there are opportunities to assist scientists in developing new projects, and that led to Yoyo@home that will allow the community to help scientists in developing BOINC projects. They regularly participate in conferences and exhibitions to promote the opportunity to other people interested in technology, and they became part of Quake-catcher network. They receive significant press coverage Рeventually the city of Marburg (Germany) offered the organisation physical pace that became the Hackspace of the city. Once there is a steady place, they created more sophisticated cluster computers. They also set up the WLAN in the local refugee camp. Finally, they also develop their own scientific project- RNA world which is completely internal project. They encountered problems with very large output files from simulations so they are learning about running distributed computing projects as scientists who use the results and not only as volunteers. They also starting to run different projects about tree health with data recording such as location, photo and plant material.   Similarly, they map protected flowers Рall this on volunteer basis. They participate in the effort of developing citizen science strategy 2020 for Germany, and they would like funding to be available to average person so they can participate in projects. There is risk that citizen science will be co-opted by scientists Рneed to leave space for grass-roots initiatives. There are also barriers for publications. The need for lab results in addition to the simulation encouraged the creation of the wet lab. 

The last short guest talk came from Bernard Revaz who suggested to create Massive Multiplayer Online Science Рusing game environments like WoW (World of Warcraft) to do science. His aim is inject science into projects such as Eve online Рat a given time there are 40,000 users, median age 35, with 50% with degree in science. In Eve online they design an element from the human protein atlas that the gamers will help to classify. The stakeholders in their discussion include scientists,  the gaming company and players and all are very positive about the prospect. In Eve online there are many communities Рthey are creating a new community of scientists so people join it voluntarily. Working on matching the science tasks to the game narrative and to the game reward system.

After these two guest talks, there were two Demos. 

wpid-wp-1442502761020.jpgFirst, Virtual Atom Smasher¬†(VAS) – Ioannis Charalampidis (CERN) – the VAS is about the way CERN develop the science cycle -observe the situation, lead to theory by theoretical physicists and then carry out experiments to test them. The process includes computer simulations that are explored against experimental data. They are trying to adjust the models until the model reflect the results.VAS evolved from a project by ¬†15 years old student in 2010, who managed to create the best fitting results of a simulation. The VAS is about real cutting edge science, but it is also very challenging and created a game (but don’t use the word game – it’s a simulation). The VAS use CitizenGrid and RedWire for the game and CCL tracker to understand the way people use the platform. The analytics show the impact of training to the desired flow of the game. The VAS combines exploration with opportunities for learning.¬†

Geotag-X – Eleanor Rusack (UNITAR). This is a platform to crowdsource the analysis of images in humanitarian crises. They usually use satellite imagery to deal with crises, but there are limitations to some images – roofs, clouds etc., and there is a need to know what is going on the ground. The idea is to harvest photos coming from disaster , then analyse them and share the knowledge. A lot of information in photos can be very useful – it’s possible to extract structural information and other details in the image. They got a workflow, who set projects, they then develop the structure of the processing and tutorials, and tools for photo collection tools (from Flickr, Twitter, EpiCollect and Chrome extension). The photos are added to the analysis pool. They have created a project to allow people deal with Yemeni Cultural Heritage at risk as ¬†a result of the way that is happening there. The syste is mostly based on self learning. Geotagging photo is a challenging tasks. It’s a specially an area that need more work. The experts are professionals or academics in specific domain who can help people to design the process, while participants are coming from different backgrounds. They are recruiting people through SciStarter, Mozilla science etc. The keep in touch with online volunteer groups – people who come from SciStarter tend to stay. Digital volunteers also help a lot and they encourage volunteering through presentation, but most important are data sprints. They use evaluation of agreement between analysts – agreement show easy to agree. There is a range of responses to agreement across standard deviation: they identify 3 groups – easy (high ¬†agreement, low standard deviation), mid (high std div and median agreement) and complex (low agreement, low std div). Analysis of images against these agreement level help to improve designs. The want to move the questions up the curve and how to train large number of analysts when project leaders have limited time?¬†

The follow up discussion explored improvements to VAS – such as integrating arts or linking a BOINC project that will contribute computing resources to the VAS. For Geotag-X, the discussion explored the issue of training – with ideas about involving volunteers in getting the training right, run virtual focus groups or exploring design aspects and collaborations between volunteers.