nQuire-it/Sense-it – discovering sensors in your phone

Sense-it Light sensor Sense-it Sound
The Open University, with support from Nominet Trust and UTC Sheffield have launched  the nQuire-it.org website, which seem to have a great potential for running citizen science activities. The nQuire platform allows participants to create science inquiry ‘missions’. It is accompanied by an Android app called Sense-it that exposed all the sensors that are integrated in a smartphone and let you see what they are doing and the values that they are showing.

The process of setting up a project on the nQuire-it site is fairly quick and you can figure it out in few clicks. Then, joining the project that you’ve created on the phone is also fairly simple, and the integration with Google, Facebook and Twitter accounts mean that linking the profiles is quick. Then you can get few friends to start using it, and the Sense-it app let you collect the data and then share it with other participants in the project on the nQuire website. Then participants can comment on the data, ask questions about how it was produced and up or down vote it. All these make nQuire a very suitable place for experimentation with sensors in smartphones and prototyping citizen science activities. It also provides an option for recording geographic location, and it good to see that it’s disabled by default, so the project designer need to actively switch it on.

Neoliberal addresses

What does addresses got to do with economic theory and political dogma? turn out that quite a lot. As I was looking at the latest press release from the cabinet office, proudly announcing that the government is investing in (yet another) UK address database, I realised that the handling of UK addresses, those deceivingly simple ‘221b Baker St NW1 6XE‘ provide a parable for the stupidity of neoliberalism.

To avoid doubt: this is not about Open Addresses UK. It’s about the systemic failures of the past 20 years. 

Also for avoidance of doubt, my views are similar to Richard Murphy about the joy of tax. I see collective action and common investment in national assets through taxation as a wonderful thing, and I don’t mind R&D investment being spent on infrastructure that might fail – it’s true for Beagle 2 as much as it’s true for a national address database. So you won’t see here ‘this is a waste of taxpayers money’. It’s the systemic issues that I question here. 

Finally, If I got some specific details of the history of the development wrong – I’m happy to be stand corrected!

The starting point must be to understand what is the point in address database. The best explanation is from one of the top UK experts on this issue – Bob Barr (OBE). Bob identified ‘Core Reference Geographies‘ which have the following characteristics: Definitive; Should be collected and maintained once and used many times; Are Natural monopolies; Have variable value in different applications; and, Have highly elastic demand. We can also call these things ‘Commons‘ because the way we want people to be able to share them while protecting their future – and ideally avoid ‘tragedy of the commons‘.

© Copyright Roger Templeman and licensed for reuse under this Creative Commons Licence
© Copyright Roger Templeman and licensed for reuse under this Creative Commons Licence

Addresses are such ‘core reference geography’. Think about all the applications for a single, definitive database of all UK addresses – it can be used to send the post, plan the census, dispatch emergency services, deliver a broadband link to the right property, check for fraud during purchase transactions, and much more. To make sense of the address above, you need to have geographical location, street name and house number and postcode. Ordnance Survey map can be used to set the location, the street name is set by the local authority and the postcode by the Royal Mail. Merge these sources with a few other bits of information and in principle, you can have a definitive set. Do it for the whole country and you have this ‘core reference geography’, which sounds simple…

The story is a bit more complex – as long as information was not digitised and linked, mismatches between addresses from different sources was not a huge problem, but in the mid 1990s, because of the use of digital records and databases, it became important to have a common way to link them. By that time, the Post Office Postal Address File (PAF) became the de facto definitive address database. Actually, it’s been around since the 1970s, used by the Post Office not as a definitive address database, but to serve internal needs of mail delivery. However, in the absence of any other source, people started to using it – for example, in statistical studies (e.g. this paper from 1988). While I can’t find a specific source for the history of PAF, I guess that at some point, it became a product that is shared with other organisations and sold for direct marketing companies and other users. Naturally, it wouldn’t be what you would design as the definitive source if you start all over again, but it was there, and it was good enough, so people used it.

Without raising false nostalgia about the alternatives, imagine that the need for definitive address database happened at a time when all the entities that are responsible for the elements of an address were part of the public sector. There would be plenty of power struggles, feet dragging, probably cross-departmental animosity and all sort of other obstacles. However, as been proven time and again – when it is all inside the sphere of government control, reorganisation is possible. So you could imagine that at the end of the day, you’d get ‘address directorate’ that manage addresses as national commons.

Now, we can get to the core of the story. Let’s look at the definition of neoliberalism that I want to use here. The definition is from a very good article on the Daily Kos that uses the definition ‘Neoliberalism is a free market economic philosophy that favors the deregulation of markets and industries, the diminution of taxes and tariffs, and the privatization of government functions, passing them over to private business.’ In terms of the political dogma that came with it, it is seeing market solutions as the only solution to societal issues. In the UK, this form of thinking started in the 1980s.

By the time that GIS proliferated and the need for a definitive address database became clear, the neoliberal approach was in full gear. The different entities that need to share information in order to create this common address database were pushed out of government and were asked to act in quasi-commercial way, at which point, the people who run them are instructed to maximise the self-interest of the entity and market their products at prices that ‘the market will bare’. However, with no alternatives and necessity to use definitive information, pricing is tricky. In terms of sharing information and creating a common product, such entities started bickering over payments, intellectual property and control. The Ordnance Survey had Address-Point, the Post Office/Royal Mail had the PAF, and while being still de facto datasets, no satisfactory definitive database emerged. You couldn’t get beyond this point as the orgnaisational structure requires each organisation to hold to their ‘property’, so while the need became clearer, the solution was now more difficult. 

In the second round, what looks like a good bottom-up approach was proposed. The idea was the local authorities are the best source of information to create a definitive address database (National Land and Property Gazetteer) because they are the closest to the changes on the ground and can manage them. However, we are under neoliberal dogma, so the whole thing need to operate commercially, and you go for a public/private partnership for that. Guess what? It didn’t work.

Third round, you merge the company from the second round with entity from the first round to create another commercial partnership. And  you are still stuck, because fundamentally, there is still the demand to control assets in order to sell them in the market.

Fourth and something that deserve as the most idiotic step in the story is the privatisation of the Royal Mail, which need to maintain ‘assets’ in order to be ‘attractive for investors’ so you sell the PAF with it. It all work within neoliberal logic but the implications is that instead of just dealing with a network of public owned bodies which it is possible to dictate what they should do, you now have it in the private sector, where intellectual property is sacred.

In the final stage, you think: oh, I got a solution, let’s create a new entity that will crowdsource/reuse open data, however, you are a good neoliberal and you therefore ask it to come up with a business model. This time it will surely work, ignoring the huge effort to build business models and all the effort that was invested into trying to pay for a sustainable address databases in the past 20 years. This time it’s going to work.

Let’s ask then, if we do believe in markets so much, should we expect to see a competitor address database to PAF/Address-Point/NLPG appearing by now? Here we can argue that it’s an example for ‘market failure‘ – the most obvious kind is when you can see lack of investment or interest from ‘participants in the market’ to even start trading.

If indeed it was all about free markets and private entrepreneurial spirit, you might expect to see several database providers competing with one another, until, eventually, one or two will become the dominant (the ‘natural monopoly’ above) and everyone use their services.  Building such a database in the era of crowdsourcing should be possible. Just like with the early days of OpenStreetMap, you don’t want ‘contamination’ by copying information from a source that holds database rights or copyright over the information that you use. So we want cases of people voluntarily typing in their addresses, while the provider collate the raw data. Inherently, the same way that Google crowdsource queries because people are typing it and giving the text to Google for use, so does anyone who type their delivery address in Amazon.co.uk. This is crowdsourced addresses – not copied from an external dataset, so even if, for the aim of error checking the entry is tested against PAF, they are not derivatives. Take all these addresses, clean and organise them, and you should have a PAF competitor that was created by your clients.

So Amazon is already an obvious candidate for creating it from ‘passive crowdsourcing’ as a side effect of their day to day operations. Who else might have a database that came from people inputting addresses in the UK to a degree that the body can create a fairly good address database? It doesn’t take a lot of thinking to realise that there are plenty.   Companies that are operating at a scale like Amazon probably got a very high percentage of addresses in the UK. I’d guess that also Experian will have it for their credit checks, and Landmark is in a very good place because of all the property searches. You can surely come with many more. None of these companies is offering a competition to PAF, so that tells you that commercially, no private sector company is willing to take the risk and innovate with a product. That’s understandable, as there is the litigation risk from all the messy group of quasi-public and private bodies that see addresses as their intellectual property. The end result: there is private sector provision of address database.

And all the while, nobody is daring to think about nationalising the database, force, by regulation and law that all these quasi-commercial bodies work together regardless of their ways of thinking. And it’s not that nationalisation is impossible – just check how miraculously Circle Healthcare is ‘exit private contract‘ (because the word nationalisation is prohibited in neoliberal dogma).

To avoid trolling from open data advocates: I wish the best to Open Addresses UK. I think that it’s a super tough task and it will be great to see how it evolves. If, like OSM, one of the companies that can crowdsource addresses can give them their dirty data, it is possible that they build a database fast. This post is not a criticism of Open Address UK, but all the neolibral dogmatic people who can’t simply go for the most obvious solution: take the PAF out of Royal Mail and give it to Open Addresses. Considering the underselling of the shares, there is an absolute financial justification to do so, but that’s why I pointed the sanctity of private companies assets…

So the end result: huge investment by government, failing again and again (and again) because they insist on neoliberal solutions instead of the obvious treatment of commons – hold them by government and fund them properly.

 

 

 

Geographic Information Science and Citizen Science

Thanks to invitations from UNIGIS and Edinburgh Earth Observatory / AGI Scotland, I had an opportunity to reflect on how Geographic Information Science (GIScience) can contribute to citizen science, and what citizen science can contribute to GIScience.

Despite the fact that it’s 8 years since the term Volunteers Geographic Information (VGI) was coined, I didn’t assume that all the audience is aware of how it came about or the range of sources of VGI. I also didn’t assume knowledge of citizen science, which is far less familiar term for a GIScience audience. Therefore, before going into a discussion about the relationship between the two areas, I opened with a short introduction to both, starting with VGI, and then moving to citizen science. After introduction to the two areas, I’m suggesting the relationships between them – there are types of citizen science that are overlapping VGI – biological recording and environmental observations, as well as community (or civic) science, while other types, such as volunteer thinking includes many projects that are non-geographical (think EyeWire or Galaxy Zoo).

However, I don’t just list a catalogue of VGI and citizen science activities. Personally, I found trends a useful way to make sense of what happen. I’ve learned that from the writing of Thomas Friedman, who used it in several of his books to help the reader understand where the changes that he covers came from. Trends are, of course, speculative, as it is very difficult to demonstrate causality or to be certain about the contribution of each trends to the end result. With these caveats in mind, there are several technological and societal trends that I used in the talk to explain how VGI (and the VGI element of citizen science) came from.

Of all these trends, I keep coming back to one technical and one societal that I see as critical. The removal of selective availability of GPS in May 2000 is my top technical change, as the cascading effect from it led to the deluge of good enough location data which is behind VGI and citizen science. On the societal side, it is the Flynn effect as a signifier of the educational shift in the past 50 years that explains how the ability to participate in scientific projects have increased.

In terms of the reciprocal contributions between the fields, I suggest the following:

GIScience can support citizen science by considering data quality assurance methods that are emerging in VGI, there are also plenty of Spatial Analysis methods that take into account heterogeneity and therefore useful for citizen science data. The areas of geovisualisation and human-computer interaction studies in GIS can assist in developing more effective and useful applications for citizen scientists and people who use their data. There is also plenty to do in considering semantics, ontologies, interoperability and standards. Finally, since critical GIScientists have been looking for a long time into the societal aspects of geographical technologies such as privacy, trust, inclusiveness, and empowerment, they have plenty to contribute to citizen science activities in how to do them in more participatory ways.

On the other hand, citizen science can contribute to GIScience, and especially VGI research, in several ways. First, citizen science can demonstrate longevity of VGI data sources with some projects going back hundreds of years. It provides challenging datasets in terms of their complexity, ontology, heterogeneity and size. It can bring questions about Scale and how to deal with large, medium and local activities, while merging them to a coherent dataset. It also provide opportunities for GIScientists to contribute to critical societal issues such as climate change adaptation or biodiversity loss. It provides some of the most interesting usability challenges such as tools for non-literate users, and finally, plenty of opportunities for interdisciplinary collaborations.

The slides from the talk are available below.

Diary of a a citizen scientist by Sharman Apt Russell

The academic literature on Citizen Science is expanding quickly, with hundreds of papers that are published in peer review publications every years about it. These papers are written by professional scientists and practitioners, mostly for an audience of other professional scientists and practitioners. A very common concern of researchers is to understand the motivations and incentives that get citizen scientists involved in projects. Unsurprisingly, there is plenty of research evaluating these aspects through questionnaires and interviews, but there is relatively little on how citizen science is experienced from the point of view of the participants (although it does come out in the research notes of Public Lab or Clare Griffiths’ account of community air quality study).

So what is it like to be a citizen scientist? 

Luckily, Sharman Apt Russell has decided to find out, and because she is a talented author with plenty of experience in creative writing of non-fiction books about science and nature, she is well placed to provide an engaging account of the experience. Covering a period of about year and a half,  her book ‘diary of citizen scientist: chasing tiger beetles and other new ways of engaging the world‘ is interesting, insightful and enjoyable read. 

Sharman didn’t took the easy route to citizen science, but decided to jump in and find out an unknown detail about the life of Tiger Beetles by studying them in the Gila river, near her home. The tasks that she took upon herself (and her family) include chasing beetles and capturing them, grow them in terrariums at home, dismember some and analyse them under microscope and so on. This quest is sparked by a statement from Dick Vane-Wright,  then the Keeper of Entomology at the Natural History Museum that ‘You could spend a week studying some obscure insect and you would know more than anyone else on the planet. Our ignorance is profound‘ (p. 15). This, of course, is not only true about insects, or animals, but also to the night sky, or our understanding of urban air pollution. I think that this can be a crucial statement for the potential of discovery in citizen science in general.

While the story about understanding the lives of the tiger beetles provide the core of the book, Sharman explores many other aspects of citizen science, from online activities, to observing the changes in nature over the seasons (phenology), and noticing the footprints in the sand. Her love of nature in her area is coming through in the descriptions of her scientific observations and also when she describes a coming storm or other aspects of her local environment.

Throughout the book, you can come across issues that citizen scientists experience – from difficulties in following instructions that seem obvious to scientists, to figuring out what the jargon mean, to the critical importance of supportive mentoring by professional scientists. All this make the book a very interesting source to understand the experience. If you want to read her short summary of Sharman’s experience, see her writing in Entomology Today.

One disclosure, though: Sharman has contacted me while working on the book, and she note the interview in her book so I was intrigued to read her description of Extreme Citizen Science, which is excellent.

British Ecological Society & Société Française d’Ecologie meeting, Lille (Day 3)

The last day of the BES/Sfé meeting was in the mood of celebration, so a session dedicated to celebrating citizen science was in place.  My notes from first day and the second day are in previous posts. These notes are long…

Before the session, in a symposium on tree health, Michael Pocock (CEH) presented ‘Monitoring to assess the impacts of tree diseases: integrating citizen science with professional monitoring‘. Ash die-back is important, and in the rest of Europe, (e.g. Denmark, Lithuania or Poland) there are losses of 60-90% but there was very little work done on monitoring the biodiversity impact of the disease in general. There is a clear lack of knowledge on the impacts on biodiversity in general – how suitable are existing surveys, how they can enhance? In a work that he done with Shelley Hinsley they reviewed 79 relevant studies, from volunteers to national professional survey and local studies. They tried to answer questions such as: What kind of things can be impacted? they identified all sort of impacts - trophic networks, structural, cascading, and ecosystem functions. They looked at different receptors in different contexts – from animals and plants on the receptors, to where they are located as context – woodland, or hedgerow. They found that woods are fairly well monitored, but how much professionals will continue to monitor it with budget cuts is an issue. Ecosystem function is very poorly monitored. The recommendations of the report are that current ongoing activities are suitable and maybe should be modified a bit to make them better (e.g. asking another question in a survey) – they didn’t recommend brand new surveys. The report is available here . If we want future proof monitoring that deal with the range of tree disease and other issues – we need a better ‘spine’ of monitoring work (in the report on page 5), but improve the integration of information and synthesis between survey. Co-location of monitoring site can be great, but actually, there are specific reasons for the locations of places in each scheme so it’s not easy to do so. In addition, volunteers based monitoring require investment in maintenance. He completed his talk with more general citizen science issue that we can learn from this work – the national plant monitoring scheme is to be launched in 2015, and there are some specific focused on lichens and other issues that require specialist knowledge in survey programmes like Splash. Mass participation is useful in some cases, but there is an issue how much recording effort is quantified – there is a big differentiation in ability to monitor species across the country and the ability of participants to record information. The retention of volunteers in mass projects is an issue – only 10% continue after a year. In enthusiasts recruitment you get higher numbers 20% that continue to be involved. The most exciting opportunity that he see is in  hypothesis-led citizen science, like the Concker Tree Science project.

The ‘Celebrating Citizen Science’ session was at the  final group of sessions of the conference, but was very well attended. Chaired by  Michael Pocock, who, together with Helen Roy, runs the BES Citizen Science SIG.

Romain Julliard (Muséum national d’Histoire naturelle)  provided an overview of citizen science activities in France in his talk ‘Biodiversity monitoring through citizen science: a case study from France’. The starting statement was that unskilled amateurs from the general public can provide good information. The museum have a role in monitoring biodiversity at the national – common species are good indicators, the appropriate for studying global changes and the general public is interested in ‘ordinary Nature’ – the things that we see every day. Scientists alone cannot monitor biodiversity over a big space such as a country, so citizens can help to collect data on a country scale and they are already spread across the country. The trade-offs of using citizens as observers include skills vs. numbers of participants – there are only few experts and enthusiasts. Another issue is sampling design: are you aiming for representativeness of where people are or do you send observers to specific locations to do the survey. There is a need for a simple protocol for volunteers. Much simpler than procedures in a research station professionals. They started with French Bird Breeding Survey in coordination with NGOs like LPO and others – with over 2000 squared that are being observed since 1989 and over 1000 provide long-term monitoring. Now they have skilled amateur schemes – monitoring bats, butterflies and much more. They started their programmes in 2005 with butterfly programme, pollinating insect survey from photographs (Spipoll) in 2010 and garden bird watch in 2012 among others – new programmes especially in the past 5 years . Spipoll provides a good example of the work that they are doing. Pollinators are useful to raise awareness and explain multi-factor pressures on the environment. 2014-12-12 13.14.25The are many sampling sites and thousands of flowers dwelling insects in France. They Spipoll protocol starts with 20 minutes ‘safari-photo’ which mean that you select a flower and take photos of each visiting insects. Second step is to select the best single photo for each insect that was sampled. Third step to name each insect from 630 possibilities – and they create an online tool that helps the identification. Final step – share the collection with other people. Once photos are shared, there are plenty of comments from other participants. The participants are encouraged to help each other observations and there is also expert participation in identification. By now, they have over 600 regular participants, 18,000 collections, and 155,000 photos. Many of the participants are not experts in biological recording but have interest in photography. in terms of data quality they looked for precision, repeatability (how close the process was to the protocol). The social control help in improving quality, and the representativeness can be done in explicit sampling design but also in post-study statistical analysis. Beginners tend not to follow the protocol, but other people are helping them and within 3-4 iterations, people are learning the protocol and follow it.

Helen Roy (CEH) talk (with Harding, Preston, Pocock and Roy) ‘Celebrating 50 years of the Biological Records Centre. She gave some key achievements that also appear in a booklet on the 50 years of BRC. The BRC was established in the 1960s to support volunteer recording in the UK – they have now a team of 14 permanent staff. 85 different recording schemes from flee to bees, ladybirds and many other groups. Recording schemes are running by volunteers coordinators – so support is provided by printing newsletters, publishing atlases, etc. They cover a lot of taxa – plants and animals. Over the decades, they have long-term datasets which lead to distribution atlases. Over 80m records. UK biodiversity indicators for the UK government are collected by volunteers and used in decision-making – they are now growing from 24 indicators to include pollinators and other elements. Another area of importance is biological invasions as it cost the UK over 12 billion EUR a year – and not only to look at existing species but also to look forward about the threats – and because volunteers are so knowledgeable, they contributed to horizon scanning work. Work on surveillance and monitoring extend to the general public with publicity – this way they for example got information that Raccoons are being seen in the UK. Another important aspect of BRC data is the ability to use it to understand the decline of native species – for example understanding changes in native ladybird species. Finally, the information is very important in climate change scenarios and use the information about habitats can help in interpreting data and predict future directions.

In the work of the BRC, technology is becoming an important driver – they share it through the NBN gateway, and also apps and websites such as iSpot, iRecord and other bits are helping in developing new sources of information. In summary, to deal with environmental challenges that we’re currently facing cannot be done without this information and interpretation by volunteers. She finished with a big thank you to the many volunteers recorders.

In ‘How to use data generated by general public of a citizen science program for conservation purpose’ Nathalie Machon (Muséum national d’Histoire naturelle) explored another successful French study. They see importance in preserving biodiversity in cities – regulate city climate, dealing with air pollution, contributing to public health etc. In cities, most of the biodiversity is in parks and gardens but the urban matrix is permeable to many animal species such as pollinators. The potential of connection between green spaces is important to create a network in the city. How the structure and management of cities influence biodiversity? was a research question that the programme ‘sauvages de ma rue‘ was set to explore. Since 2011 participants share information about wild-flowers in their own streets. When the programme started, they wanted people to learn to recognise species near them and collect information about the distribution of plants in their area . The protocol is fairly simple – identify street, collect data about plants in different habitats (cracks, walls) and send the information. They created  a guide to help people identify species and also created a smartphone app. Usually people start by providing data about their street, but the programme grew and now they have groups and organisations that deal with naturalist activity and they send a lot of data from many streets in the same place. The organisations can be about sustainability, schools university or nature enthusiasts. They receives 40,660 data points by 2014 which provided the basis for her analysis.

After correction, they had reliable 20,000 data points in 38 cities and 2500 pavements – they check the richness of pavements and the obvious factor is the length (of course) but in about 100m there is a levelling in terms of species. They found that the structure of the street is important – if it is only in cracks, there are less species. The richness is not correlated to population density, but in large urban area (Paris) there is a significant decline toward the centre. They also look at pollination – and found that the number of pollinators is correlated to the human density of the city but not correlated to the distance to the centre of the city, apart from the case in Paris. They also seen increase with habitat types in a pavement. In terms of cities, they discovered that Nantes, Brest and Angers are doing well. However, they are aware that there is an observer effect on the results. Observers were shown to be good as botanists. In summary, they’ve learned that insect pollinated species are easy to recognise and it’s possible to carry out such studies effectively with lightly trained volunteers.

Anne-Caroline Prévot (CESCO – Muséum nationa l’Histoire Naturelle) reviewed her research on ‘Short and long-term individual consequences of participation to citizen-science projects’ in an approach that combines environmental psychology and ecology. There is growing concern on separation between people and nature: extinction of experience (Pyle 2003, Miller 2005) or environmental generational amnesia (Kahn 2002). There is a need engagement of majority of citizens to change their approach. In the psychology field  , there is Stern influential piece from 2000 on environmentally significant behaviour, linking individual to different aspects of pro-environmental behaviour. Identifying social and personal factors . On the other hand, in citizen science programme there are multiple goals – contribute to ecological science ; educate people to acquire knowledge on biodiversity; etc. There is also potential of reconnection to nature – so the  question that she addressed “Did citizen science changed biodiversity representation and knowledge? environmental values? pratcial knowledge? skills?” (all these are based on Stern framework). She looked at the butterfly collection programme and interview 30 regular volunteers who participate every year – They found that they were confident in science, and they discovered new aspects of biodiversity through participation and change their gardening practices. This can change representation but they were environmentally concern to start with. There was no issue of group identity  with this group of volunteers. The second study looked at a programme at school (vigienature école) with 400 pupils from 29 classes in 11-13 age group. They use a questionnaire to understand environmental value and other activities outside schools. In addition, they asked the children to draw an urban garden. Each drawing was analysed for natural elements, built elements and humans. Participation in nature monitoring showed higher presence of nature in drawing but no difference in environmental values. They think that it probably changed representation, but not values, there was no assessment of skills and there was some aspect of group social identity. In summary citizen science initative may change knwoeldge and attitdue of volunteers but this require attention and more evaluation.

Rachel Pateman (SEI) presented the an MSc project carried out by Sian Lomax  under the supervision of Sarah West (SEI) on ‘A critical assessment of a citizen science project‘. It’s an assessment of the science and impact of participants from the OPAL Soil and Earthworm Survey. Aims of citizen science are to answer scientific questions, but also to provide benefit to participants – learning, fun, change behaviours, or information for lobbying on behalf of nature. The challenges are how to find inclusive methods and have good quality data. The participants aim are not simple – there is not simple link between participation and pro-environmental behaviour. The way to deal with that is to evaluate and reflect critically during the development of a citizen science project, and inform the design process (this remind me a lot of Amy Fowler’s thesis, also about OPAL). The OPAL programme is aimed to be educational, change of lifestyle and inspire new generation of environmentalists and greater understanding of the environment. Sian evaluate the soil and earthworm survey which are usually run with an instructor (community scientist) but also can be done by ordering a self obtained pack. The methods – dig a pit, identify worms, and identify properties of the soil and then submit the inforamtion. The aim is that participants wil learn about soil properties and get interested in environmental issues. Sian recruited 87 participants from ages 5 to 60 and also evaluated the observations of participants in the lab, as well as running a questionnaire with participants. She found fairly poor results  (around 40% accurate) in comparison to her own analysis. The results are that 39% identified correctly, 44% functional group, 46% identified as immature – the reliability of the data that adult observers done is better. Results – ID to species level is challenging, especially without help (she didn’t trained the participants) and therefore there is a need of an OPAL community scientist to be an instructor. There was not enough testing of the material at the beginning of the survey and it haven’t been improved since 2009. There is a need to verify records – but should be emphasised further and included in apps. However, despite these limitation, the OPAL survey did yield useful information and they managed to use the data to find abundance of information. Only in 29% of the cases she agreed with participants about the classification of soil granularity. When evaluating the pH of the soil – 63% was within the correct category of acid/alkaline but not correct on the value – the issue might be with the instrument that was provided to participants and yields wrong reading.

From @Simon_Wilcock

In terms of knowledge and experience – the questionnaire was done before, immediately after the survey and then 3 months later. Knowledge increased immediately after but drop-off after – so conclusion is that need to reinforce it after the event. In terms of interest in nature they didn’t find difference – but that because there was high level of interest to start with.

Jodey Peyton (CEH/BRC)  ‘Open Farm Sunday Pollinator Survey: Citizen science as a tool for pollinator monitoring?‘. The decline in pollinators in the UK is a cause of concern. Their estimated value is £510 m a year. The Big Bumbelebee discovery is an example for a project that focus on pollinators. However, we’re lacking abundance data about them. The Open Farm Sunday is a project to open farms to the public (run by LEAF) and about 4 years ago they contacted CEH to do some work with visitors collect information on pollinators

They ask participants to observe a 2×2 m of crop and non-crop area. They have an ecologists on site so they do the same as the participants – carry 2 min observations in both habitats. The event included teaching people the process and giving them information. The forms use to be 4 pages but turned out to be too complex so simplified a form with just 2 pages. They also reduce time from 5 min to 2 min. They run  surveys in 2012 to 2014 with different number of farms – and looked at different factors during the day. They found that public was over-recording (compare to ecologists), not by much – they also got data from other parts of the plant so not only on the flowers because they wanted to report something. Conclusions – on the broad level public data was similar to ecologists. Lots of interest and enthusiasm and understand what they’re seeing. It is great opportunity to highlight the issue of pollinator. Want to run it every second year because of the effort of the ecologists on the day. They also want to deal with challenge of ‘recording zero. Want to see more collaboration with universities and schools.

Charlotte Hall (EarhtWatch Institute) provided an overview of FreshWater Watch: lessons from a global mass Citizen Science programme. The programme focused on fresh water quality. A global programme that look at water quality in urban areas – each location they partner with local research institute, and Earthwatch bring the citizen scientists with the local researchers. The data that is collected is managed by EarthWatch on a specially designed website to allow sharing knowledge and communictation. The evolving motivation of participants, they looked at Rotman et al 2012 model. Initial involvment stemming from interest or existing knowledge, although in the case of EarthWatch they are getting employees of Shell or HSBC who sponsor them, they also work with teachers in Teach Earth and also expanding to work with local groups such as Thames 21 or Wandle Trust. They have over 20 research partners. With such a mix of researchers, participants and organisations, there are different motivations from different directions. They start with training in person and online Research and learning- EarthWatch is interested in behaviour change, so they see learning as a very important issue and include quizzes to check the knowledge of participants. They pay special attention to communication between EarthWatch and the scientists and between EarthWatch and the citizen scientists. There is a community feature on the website for citizen scientists and also for the scientists. There is also an app with automated feedback that tell them about the outcomes of the research they are doing. They have an element of gamification -points on communication, science and skills that participants gained and they can get to different levels. They try to encourage people to move to the next step so to continue their involvement through learning in webinars, refresher session, research updates, points and prizes and even facility for the participants to analyse the data themselves. Involvement in FreshWater watch is exhibiting participation inequality. 2014-12-12 14.43.10They would like to make it shallower but it is very strongly skewed. In Latin America there is better participation, and also differences in participation according to the researcher who lead the activity. This is new citizen science approach for EarthWatch, with different audience, so it’s important to re-evaluate and understand participants. EarthWatch is still learning from that and understanding motivation.

Emma Rothero (Open University) Flight of the Fritillary: a long-running citizen science project linking Snakeshead fritillaries flowers and bumblebees. The work started in 1999, this is a rare plant that is growing only in few places in the UK. The Bees are critical to the flower, and they set a 15% secondary count to evaluate the success of volunteers. They also started winter workshops for discussions. To engage volunteers, they’ve done wide advertising and also used naturalist networks. She described a comparison between three sites where monitoring was carried out this year . In Lugg Meadow the monitoring is done during guided walks and family outreach events. In North Meadow, many people come to see – so they have a gate presence and offered free lunch for volunteers. In Clattinger Farm they haven’t done any specific activity. In 2008 – 20011 only 20 volunteers, now they’ve got 90 volunteers, and about 30-40 who come to winter workshops. Level of volunteering – once 120 , 40 participated twice and 20 three times – there is some enthusiastic people who do it regularly. The volunteers survey show that 88% heard about the monitoring project by word of mouth (despite the advertising and media access), and 87.5% are already recorders – but 88% thought that they had improved their skills. and 65% said that they improve their skills. 54% would like to get involved in other aspects of the project, and 100% enjoyed the activity. In terms of comparison with recounts – they do 4000 1sq m quads using very accurate (1 cm) GPS. They see that there wasn’t difference between recounts in some sites but significantly difference in another site (because of difficulties in frame orientation so implementation of the protocol) – recognising problem in their method. There is also scientific discovery, where they found a case that plants didn’t appear one year but bounced back the next year.

There was no time for much discussion, but a question that was raised and discussed shortly is that most of the projects are ‘top-down’ and led by the scientists, so what is the scope for co-created projects in the area of ecological observations and monitoring?

 

British Ecological Society & Société Française d’Ecologie meeting, Lille (Day 2)

Notes from the second day of the BES/sfé annual meeting (see first day notes here)

Several talks in sessions that attracted my attention:

Daniel Richards (National University of Singapore) looked at cultural ecosystem services from social media sources. He mentioned previous study by  Casalegno at al 2013 study on social media and ecosystem services . In Singapore they carry out a study for the few green spaces that are used for leisure and nature reserves – the rest of the place is famously highly urbanised. There are patches of coastal habitat that are important locally. The analysis looked at Flickr photos to reveal interest. There are 4 study sites, with 760 photos that were returned and of them 683 related to coastal habitat. They use classification of content, with 8 people analysing the photos. Analysis of Flickr showed different aspects – landscape in one site, and wildlife in another site. In one site there are research photos due to the way it is used locally. Looking closely to one coastal site, focal points in the route where people stopped  to take a picture stood out, and landscape photos. All the photos follow the boardwalk in the area of Changi which is the only route. Simulation showed that after 70 photos they can get a good indication of the nature of the place, no need to look through all the images.

Barbara Smith explored the role of indigenous and local knowledge as part of a multiple evidence base for pollinator conservation. The context is India in agricultural area – looking at places where there is more extensive agriculture and less. The project aim is to record pollinators and then explore the impact of landscape and crop productivity . In this study, the starting point was the belief that traditional knowledge has a lot of value, and it is a knowledge that can be integrated with scientific information.  She mentioned Tengo et al 2013 discussion paper in IPBES on the value of local knowledge, and also Sutherland et al 2014 paper in Oryx about the need to integrate indigenous knowledge in ecological assessment. The aim to collate knowledge of trends, they created a local peer-review process to validate local knowledge. Understanding  factual data collection and separate it from inferences which are sometime wrong. They carry out small group discussions, in which they involved 5-7 farmers, in each of the 3 study area they had 3 groups. They asked questions that are evidence gathering (which crop you grow?) and also verification (how do you know?) they also ask opinion scoping (perceptions ) and then ‘why did you observed the change?’. In the discussions with the farmers they structured in around questions that can be explored together. After the first session, the created declarations – so ‘yields have fallen by 25%’ or crop yield declined because of the poor soil’ the statements were accepted or rejected through discussion with the farmers – local peer-review. Not all farmers can identify pollinators, and as the size goes down, there is less identification and also confusion about pests and pollinators. The farmers identified critical pollinators in their area and also suggestions on why the decline happen.

In the workshop on ‘Ecosystem assessments – concepts, tools and governance‘ there was various discussion on tools that are used for such purposes, but it became clear to me that GIS is playing a major role, and that many of the fundamental discussions in GIScience around the different types of modelling – from overlaying to process oriented modelling – can play a critical role in making sense of the way maps and GIS outputs travel through the decision making. It can be an interesting area to critically analysed – To what degree the theoretical and philosophical aspects of the modelling are taken into account in policy processes? The discussion in the workshop moved to issues of scientific uncertainty and communication with policy makers. The role of researchers in the process and the way they discuss uncertainty.

In the computational ecology session, Yoseph Araya presented a talk that was about the use of citizen science data, but instead he shared his experience and provide an interesting introduction to a researcher perspective on citizen science. He looked at the data that is coming from citizen science and the problem of getting good data. Citizen Science gaining attention – e.g. Ash die-back and other environmental issues are leading to attention. Citizens are bridging science, governance and participation. Citizen Science is needed for data at temporal, spatial and social scales and we should not forget that it is also about social capital, and of course fun and enjoyment. There is an increase in citizen science awareness in the literature. He is building on experience from many projects that he participated in include Evolution Megalab, world water monitoring day, floodplain meadows partnership, iSpot and OPAL, and CREW – Custodians of Rare and Endangered Windflowers (that’s a seriously impressive set of projects!). There are plenty of challenges – recruitment, motivation; costs and who pays; consideration of who run it; data validation and analysis and others. Data issues include data accuracy, completeness, reliability, precision and currency. He identified sources of errors – personnel, technical and statistical. The personal – skills, fitness and mistakes and others. Potential solutions – training with fully employed personnel,  then also monitor individual and also run an online quiz. Technically, there is the option of designing protocols and statistically, it is possible to use recounts (15%), protocols that allow ‘no data’ and other methods.

The poster session included a poster from Valentine Seymour, about her work linking wellbeing and green volunteering