Today, OpenStreetMap celebrates 10 years of operation as counted from the date of registration. I’ve heard about the project when it was in early stages, mostly because I knew Steve Coast when I was studying for my Ph.D. at UCL.  As a result, I was also able to secured the first ever research grant that focused on OpenStreetMap (and hence Volunteered Geographic Information – VGI) from the Royal Geographical Society in 2005. A lot can be said about being in the right place at the right time!

OSM Interface, 2006 (source: Nick Black)

OSM Interface, 2006 (source: Nick Black)

Having followed the project during this decade, there is much to reflect on – such as thinking about open research questions, things that the academic literature failed to notice about OSM or the things that we do know about OSM and VGI because of the openness of the project. However, as I was preparing the talk for the INSPIRE conference, I was starting to think about the start dates of OSM (2004), TomTom Map Share (2007), Waze (2008), Google Map Maker (2008).  While there are conceptual and operational differences between these projects, in terms of ‘knowledge-based peer production systems’ they are fairly similar: all rely on large number of contributors, all use both large group of contributors who contribute little, and a much smaller group of committed contributors who do the more complex work, and all are about mapping. Yet, OSM started 3 years before these other crowdsourced mapping projects, and all of them have more contributors than OSM.

Since OSM is described  as ‘Wikipedia of maps‘, the analogy that I was starting to think of was that it’s a bit like a parallel history, in which in 2001, as Wikipedia starts, Encarta and Britannica look at the upstart and set up their own crowdsourcing operations so within 3 years they are up and running. By 2011, Wikipedia continues as a copyright free encyclopedia with sizable community, but Encarta and Britannica have more contributors and more visibility.

Knowing OSM closely, I felt that this is not a fair analogy. While there are some organisational and contribution practices that can be used to claim that ‘it’s the fault of the licence’ or ‘it’s because of the project’s culture’ and therefore justify this, not flattering, analogy to OSM, I sensed that there is something else that should be used to explain what is going on.

TripAdvisor FlorenceThen, during my holiday in Italy, I was enjoying the offline TripAdvisor app for Florence, using OSM for navigation (in contrast to Google Maps which are used in the online app) and an answer emerged. Within OSM community, from the start, there was some tension between the ‘map’ and ‘database’ view of the project. Is it about collecting the data so beautiful maps or is it about building a database that can be used for many applications?

Saying that OSM is about the map mean that the analogy is correct, as it is very similar to Wikipedia – you want to share knowledge, you put it online with a system that allow you to display it quickly with tools that support easy editing the information sharing. If, on the other hand, OSM is about a database, then OSM is about something that is used at the back-end of other applications, a lot like DBMS or Operating System. Although there are tools that help you to do things easily and quickly and check the information that you’ve entered (e.g. displaying the information as a map), the main goal is the building of the back-end.

Maybe a better analogy is to think of OSM as ‘Linux of maps’, which mean that it is an infrastructure project which is expected to have a lot of visibility among the professionals who need it (system managers in the case of Linux, GIS/Geoweb developers for OSM), with a strong community that support and contribute to it. The same way that some tech-savvy people know about Linux, but most people don’t, I suspect that TripAdvisor offline users don’t notice that they use OSM, they are just happy to have a map.

The problem with the Linux analogy is that OSM is more than software – it is indeed a database of information about geography from all over the world (and therefore the Wikipedia analogy has its place). Therefore, it is somewhere in between. In a way, it provide a demonstration for the common claim in GIS circles that ‘spatial is special‘. Geographical information is infrastructure in the same way that operating systems or DBMS are, but in this case it’s not enough to create an empty shell that can be filled-in for the specific instance, but there is a need for a significant amount of base information before you are able to start building your own application with additional information. This is also the philosophical difference that make the licensing issues more complex!

In short, both Linux or Wikipedia analogies are inadequate to capture what OSM is. It has been illuminating and fascinating to follow the project over its first decade,  and may it continue successfully for more decades to come.

During the symposium “The Future of PGIS: Learning from Practice?” which was held at ITC-University of Twente, 26 June 2013, I gave a talk titled ‘Keeping the spirit alive’ – preservations of participatory GIS values in the Geoweb, which explored what was are the important values in participatory GIS and how they translate to the Geoweb, Volunteered Geographic Information and current interests in crowdsourcing. You can watch the talk below.


To see the rest of the presentations during the day, see https://vimeo.com/album/2475389 and details of the event are available here http://www.itc.nl/Pub/Events-Conferences/2013/2013-June/Participatory-GIS-Symposium.html

 

Since early 2010, I had the privilege of being a member of the editorial board of the journal Transactions of the Institute of British Geographers . It is a fascinating position, as the journal covers a wide range of topics in geography, and is also recognised as one of the top journals in the field and therefore the submissions are usually of high quality. Over the past 3 years, I was following a range of papers that deal with various aspects of Geographic Information Science (GIScience) from submission to publication either as a reviewer or as associate editor. Transactions of the IBG cover

In early 2011, I agreed to coordinate a virtual issue on GIScience.  The virtual issue is a collection of papers from the archives of the journal, demonstrating the breadth of coverage and the development of GIScience within the discipline of geography over the years. The virtual issues provide free access to a group of papers for a period of a year, so they can be used for teaching and research.

Editing the virtual issue was a very interesting task – I was exploring the archives of the journal, going back to papers that appeared in the 1950s and 1960s. When looking for papers that are relevant to GIScience, I came across various papers that relate to geography’s ‘Quantitative Revolution‘. The evolution of use of computers in geography and later on the applications of GIS is covered in many papers, so the selection was a challenge. Luckily, another member of the editorial board, Brian Lees, is also well versed in GIScience as the editor of the International Journal of GIScience. Together, we made the selection of the papers that are included in the issue. Other papers are not part of the virtual issue but are valuable further reading.

To accompany the virtual issue, I have written a short piece, focusing on the nature of GIScience in geography. The piece is titled “Geographic Information Science: tribe, badge and sub-discipline” and is exploring how the latest developments in technology and practice are integrated and resisted by the core group of people who are active GIScience researchers in geography.

You can access the virtual issue on Wiley-Blackwell online library and you will find papers from 1965 to today, with links to further papers that are relevant but not free for access. The list of authors is impressive, including many names that are associated with the development of GIScience over the years from Torstan Hägerstrand or David Rhind to current researchers such as Sarah Elwood, Agnieszka Leszczynski or  Matt Zook.

The virtual issue will be officially launched (and was timed to coincide with) at the GIScience 2012 conference.

As I cannot attend the conference, and as my paper mentioned the Twitter-based GeoWebChat (see http://mappingmashups.net/geowebchat/) which is coordinated by Alan McConchie, I am planning to use this medium for running a #geowebchat that is dedicated to the virtual issue on the 18th September 2012, at 4pm EDT, 9pm BST so those who attend the conference can join at the end of the workshops day.

At the end of 2010, Matt Wilson (University of Kentucky) and Mark Graham(Oxford Internet Institute), started coordinating a special issue of Environment and Planning Adedicated to ‘Situating Neogeography’, asking ‘How might we situate neogeography?  What are the various assemblages, networks, ecologies, configurations, discourses, cyborgs, alliances that enable/enact these technologies?’

My response to this call is a paper titled ‘Neogeography and the delusion of democratisation’ and it is finally been accepted for publication. I am providing below an excerpt from the introduction, to provide a flavour of the discussion:

“Since the emergence of the World Wide Web (Web) in the early 1990s, claims about its democratic potential and practice are a persistent feature in the discourse about it. While awareness of the potential of ‘anyone, anytime, anywhere’ to access and use information was extolled for a long while (for an early example see Batty 1997), the emergence of Web 2.0 in the mid-2000s (O’Reilly 2005) increased this notion. In the popular writing of authors such as Friedman (2006), these sentiments are amplified by highlighting the ability of anyone to ‘plug into the flat earth platform’ from anywhere and anytime.

Around the middle of the decade, the concept of neogeography appeared and the ability to communicate geographic information over the Web (in what is termed the GeoWeb) gained prominence (see Haklay et al. 2008). Neogeography increased the notion of participation and access to geographic information, now amplified through the use of the political term democratisation. The following citations provide a flavour of the discourse within academic and popular writing – for example, in Mike Goodchild’s declaration that ‘Just as the PC democratised computing, so systems like Google Earth will democratise GIS’ (quoted in Butler 2006), or Turner’s (2006) definition of neogeography as ‘Essentially, Neogeography is about people using and creating their own maps, on their own terms and by combining elements of an existing toolset. Neogeography is about sharing location information with friends and visitors, helping shape context, and conveying understanding through knowledge of place’.  This definition emphasises the wide access to the technology in everyday practice. Similar and stronger statements can be found in Warf and Sui (2010) who clarify that ‘neogeography has helped to foster an unprecedented democratization of geographic knowledge’ (p. 200) and, moreover, ‘Wikification represents a significant step forward in the democratization of geographic information, shifting control over the production and use of GIS data from a handful of experts to large groups of users’ (ibid.). Even within international organisations this seems to be the accepted view as Nigel Snoad, strategy adviser for the communications and information services unit of the United Nations Office for the Coordination of Humanitarian Affairs (OCHA), stated: ‘On the technology side, Google, Microsoft and OpenStreetMap have really democratized mapping’ (cited in Lohr 2011).

However, what is the nature of this democratisation and what are its limits? To what extent do the technologies that mediate the access to, and creation of, geographic information allow and enable such democratisation?

To answer these questions, we need to explore the meaning of democratisation and, more specifically, within the context of interaction between people and technology. According to the Oxford English Dictionary, democratisation is ‘the action of rendering, or process of becoming, democratic’, and democracy is defined as ‘Government by the people; that form of government in which the sovereign power resides in the people as a whole, and is exercised either directly by them (as in the small republics of antiquity) or by officers elected by them. In modern use often more vaguely denoting a social state in which all have equal rights, without hereditary or arbitrary differences of rank or privilege’ [emphasis added]. A more colloquial notion of democratisation, and a much weaker one, is making a process or activity that used to be restricted to an elite or privileged group available to a wider group in society and potentially to all. For example, with mobile telephony now available across the globe, the statement ‘mobile telephony has been democratised’ aims to express the fact that, merely three decades ago, only the rich and powerful members of Western society had access to this technology.

Therefore, it is accepted from the start that the notion of democratisation cited above is more about the potential of neogeography to make the ability to assemble, organise and share geographical information accessible to anyone, anywhere and anytime and for a variety of purposes than about advancing the specific concept of democracy. And yet, it will be wrong to ignore the fuller meaning of the concept. Democratisation has a deeper meaning in respect of making geographic information technologies more accessible to hitherto excluded or marginalised groups in a way that assists them to make a change in their life and environment. Democratisation evokes ideas about participation, equality, the right to influence decision making, support to individual and group rights, access to resources and opportunities, etc. (Doppelt 2006). Using this stronger interpretation of democratisation reveals the limitation of current neogeographic practices and opens up the possibility of considering alternative development of technologies that can, indeed, be considered as democratising.

To explore this juncture of technology and democratisation, this paper relies on Andrew Feenberg’s critical philosophy of technology, especially as explored in his Questioning Technology (1999) and Transforming Technology (2002), which is useful as he addresses issues of democratisation and technology directly. For readers who are not familiar with the main positions within philosophy of technology, a very brief overview – based on Feenberg’s interpretation (1999) – is provided. This will help to explain his specific critique and suggestion for ‘deep democratisation’ of technology.

Equipped with these concepts, attention is turned to the discussion about the democratic potential of Geographic Information Systems (GIS), which appears in early discussions about GIS and society in the 1990s, and especially to the discussions within the literature on (Public) Participatory GIS (PPGIS/PGIS – assumed to be interchangeable here) and critical GIS. As we shall see, discussions about empowerment, marginalisation and governance are central to this literature from its inception and provide the foundations to build a deeper concept of democratisation when considering neogeographic practices.

Based on this historical understanding, the core of the paper explores why it is that neogeographic practices are assumed to be democratising and, more importantly, what the limitations are on their democratic potential. To do that, a hierarchy of ‘hacking’ – that is the artful alteration of technology beyond the goals of its original design or intent – is suggested. Importantly, here ‘hacking’ does not mean the malicious alteration of technology or unauthorised access to computer systems, or the specific culture of technology enthusiasts (‘hacker culture’). The term is used to capture the first and second instrumentation that Feenberg (1996, 2002) describes.  As we shall see, by exploring the ability to alter systems, there is some justification in the democratisation claims of neogeography as it has, indeed, improved the outreach of geographic technologies and opened up the potential of their use in improving democratic processes, but in a much more limited scope and extent. The paper concludes with observations on the utilisation of neogeographic technologies within the participatory process that aim to increase democratisation in its deeper sense.”

The paper’s concepts are based on talk that I originally gave in 2008 as part of the World University Netowrk seminar on Neogeography. A final note is about the length of time that some ideas need from first emerging until publication – even with the current imagination of ‘fast moving technology’, there is a value in thinking through an idea over 4 years.

Image representing Google Earth as depicted in...

It is always nice to announce good news. Back in February, together with Richard Treves at the University of Southampton, I submitted an application to the Google’s Faculty Research Award program for a grant to investigate Google Earth Tours in education. We were successful in getting a grant worth $86,883 USD.  The project builds on my expertise in usability studies of geospatial technologies, including the use of  eye tracking and other usability engineering techniques for GIS and Richard’s expertise in Google Earth tours and education, and longstanding interest in usability issues.

In this joint UCL/Southampton project, UCL will be lead partner and we will appoint a junior researcher for a year to develop run experiments that will help us in understanding of the effectiveness of Google Earth Tours in geographical learning, and we aim to come up with guidelines to their use. If you are interested, let me know.

Our main contact at Google for the project is Ed Parsons. We were also helped by Tina Ornduff and Sean Askay who acted as referees for the proposal.
The core question that we want to address is “How can Google Earth Tours be used create an effective learning experience?”

So what do we plan to do? Previous research on Google Earth Tours (GETs) has shown them to be an effective visualization technique for teaching geographical concepts, yet their use in this way is essentially passive.  Active learning is a successful educational approach where student activity is combined with instruction to enhance learning.  In the proposal we suggest that there is great education value in combining the advantages of the rich visualization of GETs with student activities. Evaluating the effectiveness of this combination is the purpose of the project, and we plan to do this by creating educational materials that consist of GETs and activities and testing them against other versions of the materials using student tests, eye tracking and questionnaires as data gathering techniques.

We believe that by improving the techniques by which spatial data is visualized we are improving spatial information access overall.
A nice aspect of the getting the project funded is that it works well with a project that is led by Claire Ellul and Kate Jones and funded by JISC. The G3 project, or “Bridging the Gaps between the GeoWeb and GIS” is touching on similar aspects and we surely going to share knowledge with them.
For more background on Richard Treves, see his blog (where the same post is published!)

The G3 Project, is a new project led by Claire Ellul and  Kate Jones and funded by the JISC geospatial working group.  The project’s aim is to create an interactive online mapping tutorial system for students in areas that are not familiar with GIS such as urban design, anthropology and environmental management.

The project can provides a template for the introduction of geographical concepts to new groups of learners. By choosing a discipline specific scenario, key geographic concepts and functions will be presented to novices in a useful and useable manner so the learning process is improved. Users will be introduced to freely available geographic data relevant to their particular discipline and know where to look for more. G3 Project will create a framework to support learners and grow their confidence without facing the difficult interfaces and complexity of desktop mapping systems that are likely to create obstacles for students, with the feeling that ‘this type of analysis is not for me’.

Check the project’s blog for regular updates and developments.

Following successful funding for the European Union FP7 EveryAware and the EPSRC Extreme Citizen Science activities, the department of Civil, Environmental and Geomatic Engineering at UCL is inviting applications for a postdoctoral position and 3 PhD studentships. Please note that these positions are open to students from any EU country.

These positions are in the ‘Extreme Citizen Science’ (ExCiteS) research group. The group’s activities focus on the theory, methodologies, techniques and tools that are needed to allow any community to start its own bottom-up citizen science activity, regardless of the level of literacy of the users. Importantly, Citizen Science is understood in the widest sense, including perceptions and views – so participatory mapping and participatory geographic information are integral parts of the activities.

The research themes that the group explores include Citizen Science and Citizen Cyberscience; Community and participatory mapping/GIS; Volunteered Geographic Information (OpenStreetMap, Green Mapping, Participatory GeoWeb); Usability of geographic information and geographic information technology, especially with non-expert users;  GeoWeb and mobile GeoWeb technologies that facilitate Extreme Citizen Science; and identifying scientific models and visualisations that are suitable for Citizen Science.

The positions that are opening now are part of an effort to extend Dr Jerome Lewis’ research with forest communities (see BBC Report and report on software development):

Research Associate in Extreme Citizen Science – a 2-year, postdoctoral research associate position commencing 1 May 2011.

The research associate will lead the development of an ‘Intelligent Map’ that allows non-literate users to upload data securely; and the system should allow the users to visualise their information with data from other users. Permissions need to be developed in accordance with cultural sensitivities. As uploaded data from multiple users sharing the same system increase over time, repeating patterns will begin to emerge that indicate particular environmental trends.

The role will also include some general project-management duties, guiding the PhD students who are working on the project. Travel to Cameroon to the forest communities that we are working with is necessary.

Complete details about this post and application procedure are available on the UCL jobs website.

PhD Studentship – understanding citizen scientists’ motivations, incentives and group organisation – a 3.5-year fully funded studentship. We are looking for applicants with a good honours degree (1st Class or 2:1 minimum), and an MA or MSc in anthropology, geography, sociology, psychology or related discipline. The applicant needs to be familiar with quantitative and qualitative research methods, and be able to work with a team that will include programmers and human-computer interaction experts who will design systems to be used in citizen science projects. Travel will be required as part of the project. A willingness to live for short periods in remote forest locations in simple lodgings, eating local food, will be necessary. French language skills are desirable.

The research itself will focus on motivations, incentives and understanding of the needs and wishes of participants in citizen science projects. We will specifically focus on engagement of non-literate people in such projects and need to understand how the process – from data collection to analysis – can be made meaningful and useful for their everyday life. The research will involve using quantitative methods to analyse large-scale patterns of engagement in existing projects, as well as ethnographic and qualitative study of participants. The project will include working with non-literate forest communities in Cameroon as well as marginalised communities in London.

Complete details about this post and application procedure are available on the UCL jobs website.

PhD Studentship in geographic visualisation for non-literate citizen scientists - a 3.5-year fully funded studentship. The applicant should possess a good honours degree (1st Class or 2:1 minimum), and an MSc in computer science, human-computer interaction, electronic engineering or related discipline. In addition, they need to be familiar with geographic information and software development, and be able to work with a team that will include anthropologists and human-computer interaction experts who will design systems to be used in citizen science projects. Travel will be required as part of the project. A willingness to live for short periods in remote forest locations in simple lodgings, eating local food, will be necessary. French language skills are desirable.

Complete details about this post and application procedure are available on the UCL jobs website.

In addition, we offer a PhD Studentship on How interaction design and mobile mapping influences participation in Citizen Science, which is part of the EveryAware project and is also open to any EU citizen.

Follow

Get every new post delivered to your Inbox.

Join 2,593 other followers