At the end of June, I noticed a tweet about new words in Oxford English Dictionary (OED):

I like dictionary definitions, as they help to clarify things, and OED is famous for the careful editing and finding how a term is used before adding it. Being in the OED is significant for Citizen Science, as it is a recognised “proper” term. At the same time, the way that OED define citizen science, and their careful work on finding out when it was first used can help in noticing some aspects. This is how.

Here is the definition, in all its glory:

citizen science n. scientific work undertaken by members of the general public, often in collaboration with or under the direction of professional scientists and scientific institutions.

1989   Technol. Rev. Jan. 12/4   Audubon involves 225 society members from all 50 states in a ‘citizen science’ program… Volunteers collect rain samples, test their acidity levels, and report the results to Audubon headquarters.
2002   M. B. Mulder & P. Coppolillo Conservation xi. 295/1   Citizen science has the potential to strengthen conservation practice in the developing world.
2012   M. Nielsen Reinventing Discov. vii. 151   Citizen science can be a powerful way both to collect and also to analyze enormous data sets.

citizen scientist n.  (a) a scientist whose work is characterized by a sense of responsibility to serve the best interests of the wider community (now rare);  (b) a member of the general public who engages in scientific work, often in collaboration with or under the direction of professional scientists and scientific institutions; an amateur scientist.

1912   Manch. Guardian 11 Sept. 4/2   Trafford, thus serenely established, should..have returned to his researches with a new confidence and content and become a noble citizen-scientist.
1936   Headmaster Speaks 65   Could not Science..turn out a race of citizen scientists who do not make an absolute religion of the acquisition of new scientific knowledge however useless or harmful it may be?
1949   Collier’s 16 July 74/3   By 1930 most citizen-scientists had perfected a technique which brought gin to its peak of flavor and high-octane potency five minutes after the ingredients had been well mixed.
1979   New Scientist 11 Oct. 105/2   The ‘citizen-scientist’, the amateur investigator who in the past contributed substantially to the development of science through part-time dabbling.
2013   G. R. Hubbell Sci. Astrophotogr. xiii. 233   A citizen scientist in the astronomical field has a unique opportunity because astronomy is a wholly observational science.

Dictionaries are more interesting than they might seem. Here are 3 observations on this new definition:

First, the core definition of ‘citizen science’ is interestingly inclusive, so a community based air quality monitoring to volunteers bird surveys and running climate model on your computer at home are all included. This makes the definition useful across projects and types of activities.

Second, the ‘citizen scientist’ is capturing two meanings. The first meaning is noteworthy, as it is the one falls well within Alan Irwin’s way of describing citizen science, or in Jack Stilgoe’s pamphlet that describe citizen scientists. Notice that this meaning is not the common one to describe who is a citizen scientists, but arguably, scientists that are active in citizen science usually become such citizen scientists (sorry for the headache!).

Third, it’s always fun to track down the citations that OED use, as they are trying to find the first use of phrase. So let’s look at the late 20th century citations for ‘citizen science’ and ‘citizen scientist’ (the one from the early 20th century are less representative of current science in my view).

The first use of ‘citizen science’ in the meaning that we’re now using is traced to an article in MIT Technology Review from January 1989. The article ‘Lab for the Environment’ tell the story of community based laboratories to explore environmental hazards, laboratory work by Greenpeace, and Audubon recruitment of volunteers in a ‘citizen science’ programme. The part that describes citizen science is provided below (click here to get to the magazine itself). Therefore, groups such as the Public Laboratory for Open Technology and Science are linked directly to this use of citizen science. 

MIT Technology Review 1989

Just as interesting is the use of ‘citizen scientist’. It was used 10 years earlier, in an article in New Scientist that discussed enthusiasts who are researching Unidentified Flying Objects (UFO) and identified ‘ufology’ as a field of study for these people. While the article is clearly mocking the ufologists as unscientific, it does mention, more or less in passing, the place of citizen-scientists, which is “all but eliminated” by the late 1970s (click here to see the original magazine). This resonate with many of the narrative about how citizen science disappeared in the 20th century and is reappearing now. 

NewScientist1979-Details

 

If you would like to use these original references to citizen science and citizen scientists, here the proper reference (I’ll surely look out for an opportunity to do so!)

Kerson, R., 1989, Lab for the Environment, MIT Technology Review, 92(1), 11-12

Oberg, J., 1979, The Failure of the ‘Science’ of Ufology, New Scientist, 84(1176), 102-105

 


 

Thanks to Rick Bonney who asked some questions about the definition that led to this post!

What is Science?

6 September, 2014

When you look at the discussions that are emerging around the term ‘Citizen Science‘, you can often find discussion about the ‘Citizen‘ part of the term. What about the ‘Science‘ part? This is something that once you start being involved in Citizen Science you are forced to contemplate. As Francois Grey like to note ‘Science is too important to be left out to scientists‘ and we need to find a way to make it more inclusive as a process and practice. Sometime, Citizen Science challenges ‘established’ science and protocols. This can be about small things – such as noticing that diffusion tubes are installed at 2.5m (while the area of real concern is 1-1.5m), or bigger things, such as noticing that a lot of noise measurement is about what is possible to measure (sound) and avoiding what is difficult (noise). Even more challenging is the integration of local, lay and traditional knowledge within the citizen science framework with scientific knowledge. In short, there is value in considering what we mean by ‘science’.

UCL iGEM team public biobrick

UCL iGEM team public biobrick

For me, the challenge that evolved was ‘how can we have a definition of science that recognises that it’s a powerful form of knowledge, while allowing other forms of knowledge to work with it?‘. After experimenting with different ideas in the past year, I ended with the following, directly paraphrasing from the famous quote* from Winston Churchill about democracy as the least worst form of government. So the current, work in progress, definition that I’m using is the following:

“Science is the least worst method to accumulate human knowledge about the natural world (and it need to work, in a respectful way, with other forms of knowledge)”

What I am trying to do with this definition is first to recognise that knowledge is produced collaboratively and, ideally, in a democratic process. For that, the original form of the phrase is useful. Second, I wanted to note that science is not infallible but meandering, getting into blind alleys and all the rest, which the ‘least worst’ is capturing better than ‘the best’. Third, it is allowing the recognition that it is a very effective and powerful form of human knowledge.

Does it work? Is it suitable?

 


* I always like to find the correct source, and if you look at the Hansard, you’ll see that Churchill was more forthright and said: “Many forms of Government have been tried, and will be tried in this world of sin and woe. No one pretends that democracy is perfect or all-wise. Indeed, it has been said that democracy is the worst form of Government except all those other forms that have been tried from time to time;”. Now that I know that, it’s tempting to try and replace democracy with science and government with knowledge…

The Vespucci initiative has been running for over a decade, bringing together participants from wide range of academic backgrounds and experiences to explore, in a ‘slow learning’ way, various aspects of geographic information science research. The Vespucci Summer Institutes are week long summer schools, most frequently held at Fiesole, a small town overlooking Florence. This year, the focus of the first summer institute was on crowdsourced geographic information and citizen science.

101_0083The workshop was supported by COST ENERGIC (a network that links researchers in the area of crowdsourced geographic information, funded by the EU research programme), the EU Joint Research Centre (JRC), Esri and our Extreme Citizen Science research group. The summer school included about 30 participants and facilitators that ranged from master students students that are about to start their PhD studies, to established professors who came to learn and share knowledge. This is a common feature of Vespucci Institute, and the funding from the COST network allowed more early career researchers to participate.

Apart from the pleasant surrounding, Vespucci Institutes are characterised by the relaxed, yet detailed discussions that can be carried over long lunches and coffee breaks, as well as team work in small groups on a task that each group present at the end of the week. Moreover, the programme is very flexible so changes and adaptation to the requests of the participants and responding to the general progression of the learning are part of the process.

This is the second time that I am participating in Vespucci Institutes as a facilitator, and in both cases it was clear that participants take the goals of the institute seriously, and make the most of the opportunities to learn about the topics that are explored, explore issues in depth with the facilitators, and work with their groups beyond the timetable.

101_0090The topics that were covered in the school were designed to provide an holistic overview of geographical crowdsourcing or citizen science projects, especially in the area where these two types of activities meet. This can be when a group of citizens want to collect and analyse data about local environmental concerns, or oceanographers want to work with divers to record water temperature, or when details that are emerging from social media are used to understand cultural differences in the understanding of border areas. These are all examples that were suggested by participants from projects that they are involved in. In addition, citizen participation in flood monitoring and water catchment management, sharing information about local food and exploring data quality of spatial information that can be used by wheelchair users also came up in the discussion. The crossover between the two areas provided a common ground for the participants to explore issues that are relevant to their research interests. 

2014-07-07 15.37.55The holistic aspect that was mentioned before was a major goal for the school – so to consider the tools that are used to collect information, engaging and working with the participants, managing the data that is provided by the participants and ensuring that it is useful for other purposes. To start the process, after introducing the topics of citizen science and volunteered geographic information (VGI), the participants learned about data collection activities, including noise mapping, OpenStreetMap contribution, bird watching and balloon and kite mapping. As can be expected, the balloon mapping raised a lot of interest and excitement, and this exercise in local mapping was linked to OpenStreetMap later in the week.

101_0061The experience with data collection provided the context for discussions about data management and interoperability and design aspects of citizen science applications, as well as more detailed presentations from the participants about their work and research interests. With all these details, the participants were ready to work on their group task: to suggest a research proposal in the area of VGI or Citizen Science. Each group of 5 participants explored the issues that they agreed on – 2 groups focused on a citizen science projects, another 2 focused on data management and sustainability and finally another group explored the area of perception mapping and more social science oriented project.

Some of the most interesting discussions were initiated at the request of the participants, such as the exploration of ethical aspects of crowdsourcing and citizen science. This is possible because of the flexibility in the programme.

Now that the institute is over, it is time to build on the connections that started during the wonderful week in Fiesole, and see how the network of Vespucci alumni develop the ideas that emerged this week.

 

At the last day of INSPIRE conference, I’ve attended a session about  apps and applications and the final plenary which focused on knowledge based economy and the role of inspire within it. Some notes from the talks including my interpretations and comments.

Dabbie Wilson from the Ordnance Survey highlighted the issues that the OS is facing in designing next generation products from an information architect point of view. She noted that the core large scale product, MasterMap has been around for 14 years and been provided in GML all the way through. She noted that now the client base in the UK is used to it and happy with (and when it was introduced, there was a short period of adjustment that I recall, but I assume that by now everything is routine). Lots of small scale products are becoming open and also provided as linked data. The user community is more savvy – they want the Ordnance Survey to push data to them, and access the data through existing or new services and not just given the datasets without further interaction. They want to see ease of access and use across multiple platforms. The OS is considering moving away from provision of data to online services as the main way for people to get access to the data. The OS is investing heavily in Mobile apps for leisure but also helping the commercial sector in developing apps that are based on OS data and tools. For example, OS locate app provide mechanisms to work worldwide so it’s not only UK. They also put effort to create APIs and SDKs – such as OS OnDemands – and also allowing local authorities to update their address data. There is also focus on cloud-based application – such as applications to support government activities during emergencies. The information architecture side moving from product to content. The OS will continue to maintain content that is product agnostic and running the internal systems for a long period of 10 to 20 years so they need to decouple outward facing services from the internal representation. The OS need to be flexible to respond to different needs – e.g. in file formats it will be GML, RDF and ontology but also CSV and GeoJSON. Managing the rules between the various formats is a challenging task. Different representations of the same thing is another challenge – for example 3D representation and 2D representation.

Didier Leibovici presented a work that is based on Cobweb project and discussing quality assurance to crowdsourcing data. In crowdsourcing there are issues with quality of both the authoritative and the crowdsourcing data. The COBWEB project is part of a set of 5 citizen observatories, exploring air quality, noise, water quality, water management, flooding and land cover, odour perception and nuisance and they can be seen at http://www.citizen-obs.eu. COBWEB is focusing on the infrastructure and management of the data. The pilot studies in COBWEB look at landuse/land cover, species and habitat observations and flooding. They are mixing sensors in the environment, then they get the data in different formats and the way to managed it is to validate the data, approve its quality and make sure that it’s compliant with needs. The project involve designing an app, then encouraging people to collect the data and there can be lack of connection to other sources of data. The issues that they are highlighting are quality/uncertainty, accuracy, trust and relevance. One of the core questions is ‘is crowd-sourcing data need to different to any other QA/QC?’ (my view: yes, but depending on the trade offs in terms of engagement and process) they see a role of crowdsourcing in NSDI, with real time data capture QA and post dataset collection QA (they do both) and there are also re-using and conflating data sources. QA is aimed to know what is collected  – there are multiple ways to define the participants which mean different ways of involving people and this have implications to QA. They are suggesting a stakeholder quality model with principles such as vaueness, ambiguity, judgement, reliability, validity, and trust. There is a paper in AGILE 2014 about their framework.  The framework suggests that the people who build the application need to develop the QA/QC process and do that with workflow authoring tool, which is supported with ontology and then running it as web processing service. Temporality of data need to be consider in the metadata, and how to update the metadata on data quality.

Patrick Bell considered the use of smartphone apps – in a project of the BGS and the EU JRC they review existing applications. The purpose of the survey to explore what national geological organisations can learn from the shared experience with development of smartphone apps – especially in the geological sector. Who is doing the development work and which partnerships are created? What barriers are perceived and what the role of INSPIRE directive within the development of these apps? They also try to understand who are the users?  There are 33 geological survey organisations in the EU and they received responses from 16 of them. They found 23 different apps – from BGS – iGeology http://www.bgs.ac.uk/igeology/home.html and provide access to geological amps and give access to subsidence and radon risk with in-app payment. They have soil information in the MySoil app which allow people to get some data for free and there is also ability to add information and do citizen science. iGeology 3D is adding AR to display a view of the geological map locally. aFieldWork is a way to capture information in harsh environment of Greenland.  GeoTreat is providing information of sites with special value that is relevant to tourists or geology enthusiasts. BRGM – i-infoTerre provide geological information to a range of users with emphasis on professional one, while i-infoNappe tell you about ground water level. The Italian organisation developed Maps4You with hiking route and combining geology with this information in Emilia-Romagna region. The Czech Geologcial survey provide data in ArcGIS online.

The apps deal with a wide range of topics, among them geohazards, coastline, fossils, shipwrecks … The apps mostly provide map data and 3D, data collection and tourism. Many organisation that are not developing anything stated no interest or a priority to do so, and also lack of skills. They see Android as the most important – all apps are free but then do in app purchase. The apps are updated on a yearly basis. about 50% develop the app in house and mostly work in partnerships in developing apps. Some focus on webapps that work on mobile platform, to cross platform frameworks but they are not as good as native apps, though the later are more difficult to develop and maintain. Many people use ESRI SDK and they use open licenses. Mostly there is lack of promotion of reusing the tools – most people serve data. Barriers – supporting multiple platform, software development skills, lack of reusable software and limited support to reuse across communities – heavy focus on data delivery, OGC and REST services are used to deliver data to an app. Most suggesting no direct link to INSPIRE by respondents but principles of INSPIRE are at the basis of these applications.

Timo Aarmio – presented the OSKARI platform to release open data to end users (http://www.oskari.org/). They offer role-based security layers with authenticates users and four levels of permissions – viewing, viewing on embedded maps, publishing and downloading. The development of Oskari started in 2011 and is used by 16 member organisations and the core team is running from National Land Survey of Finland. It is used in Arctic SDI, ELF and Finish Geoportal – and lots of embedded maps. The end-users features allow search of metadata, searching map layers by data providers or INSPIRE themes. they have drag and drop layers and customisation of features in WFS.  Sharing is also possible with uploading shapefiles by users.  They also have printing functionality which allow PNG or PDF and provide also embedded maps so you can create a map and then embed  it in your web page.  The data sources that they support are OGC web services – WMS, WMTS, WFS, CSW and also ArcGIS REST, data import for Shapefiles and KML, and JSON for thematic maps . Spatial analysis is provided with OGC Web Processing Service – providing basic analysis of 6 methods – buffer, aggregate, union, intersect, union of analysed layres and area and sector. They are planning to add thematic maps, more advanced spatial analysis methods, and improve mobile device support. 20-30 people work on Oskari with 6 people at the core of it.

The final session focused on knowledge based economy and the link to INSPIRE.

Andrew Trigg provide the perspective of HMLR on fueling the knowledge based economy with open data. The Land registry dealing with 24 million titles with 5 million property transaction a year. They provided open access to individual titles since 1990 and INSPIRE and the open data agenda are important to the transition that they went through in the last 10 years. Their mission is now include an explicit reference to the management and reuse of land and property data and this is important in terms of how the organisation defines itself. From the UK context there is shift to open data through initiatives such as INSPIRE, Open Government Partnership, the G8 Open Data Charter (open by default) and national implementation plans. For HMLR, there is the need to be INSPIRE Compliance, but in addition, they have to deal with public data group, the outcomes of the Shakespeare review and commitment to a national information infrastructure. As a result, HMLR now list 150 datasets but some are not open due to need to protect against fraud and other factors. INSPIRE was the first catalyst to indicate that HMLR need to change practices and allowed the people in the organisation to drive changes in the organisation, secure resources and invest in infrastructure for it. It was also important to highlight to the board of the organisation that data will become important. Also a driver to improving quality before releasing data. The parcel data is available for use without registration. They have 30,000 downloads of the index polygon of people that can potentially use it. They aim to release everything that they can by 2018.

The challenges that HMLR experienced include data identification, infrastructure, governance, data formats and others. But the most important to knowledge based economy are awareness, customer insight, benefit measurement and sustainable finance. HMLR invested effort in promoting the reuse of their data however, because there is no registration, their is not customer insight but no relationships are being developed with end users – voluntary registration process might be an opportunity to develop such relations. Evidence is growing that few people are using the data because they have low confidence in commitment of providing the data and guarantee stability in format and build applications on top of it, and that will require building trust. knowing who got the data is critical here, too. Finally, sustainable finance is a major thing – HMLR is not allowed to cross finance from other areas of activities so they have to charge for some of their data.

Henning Sten Hansen from Aalborg University talked about the role of education. The talk was somewhat critical of the corporatisation of higher education, but also accepting some of it’s aspects, so what follows might be misrepresenting his views though I think he tried to mostly raise questions. Henning started by noting that knowledge workers are defined by OECD as people who work autonomously and reflectively, use tools effectively and interactively, and work in heterogeneous groups well (so capable of communicating and sharing knowledge). The Danish government current paradigm is to move from ‘welfare society’ to the ‘competitive society’ so economic aspects of education are seen as important, as well as contribution to enterprise sector with expectations that students will learn to be creative and entrepreneurial. The government require more efficiency and performance from higher education and as a result  reduce the autonomy of individual academics. There is also expectation of certain impacts from academic research and emphasis on STEM  for economic growth, governance support from social science and the humanities need to contribute to creativity and social relationships. The comercialisation is highlighted and pushing patenting, research parks and commercial spin-offs. There is also a lot of corporate style behaviour in the university sector – sometime managed as firms and thought as consumer product. He see a problem that today that is strange focus and opinion that you can measure everything with numbers only. Also the ‘Google dream’ dream is invoked – assuming that anyone from any country can create global companies. However, researchers that need time to develop their ideas more deeply – such as Niels Bohr who didn’t published and secure funding – wouldn’t survive in the current system. But is there a link between education and success? LEGO founder didn’t have any formal education [though with this example as with Bill Gates and Steve Jobs, strangely their business is employing lots of PhDs - so a confusion between a person that start a business and the realisation of it]. He then moved from this general context to INSPIRE, Geoinformation plays a strong role in e-Governance and in the private sector with the increase importance in location based services. In this context, projects such as GI-N2K (Geographic Information Need to Know) are important. This is a pan European project to develop the body of knowledge that was formed in the US and adapting it to current need. They already identified major gaps between the supply side (what people are being taught) and the demand side – there are 4 areas that are cover in the supply side but the demand side want wider areas to be covered. They aim to develop a new BoK for Europe and facilitating knowledge exchange between institutions. He concluded that Higher education is prerequisite  for the knowledge economy – without doubt but the link to innovation is unclear . Challenges – highly educated people crowd out the job market and they do routine work which are not matching their skills, there are unclear the relationship to entrepreneurship and innovation and the needed knowledge to implement ideas. What is the impact on control universities reducing innovation and education – and how to respond quickly to market demands in skills when there are differences in time scale.

Giacomo Martirano provided a perspective of a micro-enterprise (http://www.epsilon-italia.it/IT/) in southern Italy. They are involved in INSPIRE across different projects – GeoSmartCities, Smart-Islands and SmeSpire – so lots of R&D funding from the EU. They are also involved in providing GIS services in their very local environment. From a perspective of SME, he see barriers that are orgnaisational, technical and financial. They have seen many cases of misalignment of technical competencies of different organisations that mean that they can’t participate fully in projects. Also misalignment of technical ability of clients and suppliers, heterogeneity in client organisation culture that add challenges. Financial management of projects and payment to organisations create problems to SME to join in because of sensitivity to cash-flow. They experience cases were awarded contracts won offering a price which is sometime 40% below the reference one. There is a need to invest more and more time with less aware partners and clients. When moving to the next generation of INSPIRE – there is a need to engage with micro-SMEs in the discussion ‘don’t leave us alone’ as the market is unfair. There is also a risk that member states, once the push for implementation reduced and without the EU driver will not continue to invest. His suggestion is to progress and think of INSPIRE as a Serivce – SDI as a Service can allow SMEs to join in. There is a need for cooperation between small and big players in the market.

Andrea Halmos (public services unit, DG CONNECT) – covering e-government, she noted her realisation that INSPIRE is more than ‘just environmental information’. From DG CONNECT view, ICT enabled open government, and the aim of the digital agenda for Europe is to empowering citizen and businesses, strengthening the internal market, highlighting efficiency and effectiveness and recognised pre-conditions. One of the focus is the effort to put public services in digital format and providing them in cross border way. The principles are to try to be user centred, with transparency and cross border support – they have used life events for the design. There are specific activities in sharing identity details, procurement, patient prescriptions, business, and justice.  They see these projects as the building blocks for new services that work in different areas. They are seeing challenges such financial crisis, but there is challenge of new technologies and social media as well as more opening data. So what is next to public administration? They need to deal with customer – open data, open process and open services – with importance to transparency, collaboration and participation (http://www.govloop.com/profiles/blogs/three-dimensions-of-open-government). The services are open to other to join in and allow third party to create different public services. We look at analogies of opening decision making processes and support collaboration with people – it might increase trust and accountability of government. The public service need to collaborative with third parties to create better or new services. ICT is only an enablers – you need to deal with human capital, organisational issue, cultural issues, processes and business models – it even question the role of government and what it need to do in the future. What is the governance issue – what is the public value that is created at the end? will government can be become a platform that others use to create value? They are focusing on Societal Challenge   Comments on their framework proposals are welcomed – it’s available at http://ec.europa.eu/digital-agenda/en/news/vision-public-services 

After these presentations, and when Alessandro Annoni (who was charring the panel) completed the first round of questions, I was bothered that in all these talks about knowledge-based economy only the government and the private sector were mentioned as actors, and even when discussing development of new services on top of the open data and services, the expectation is only for the private sector to act in it. I therefore asked about the role of the third-sector and civil-society within INSPIRE and the visions that the different speakers presented. I even provided the example of mySociety – mainly to demonstrate that third-sector organisations have a role to play.

To my astonishment, Henning, Giacomo, Andrea and Alessandro answered this question by first not treating much of civil-society as organisations but mostly as individual citizens, so a framing that allow commercial bodies, large and small, to act but citizens do not have a clear role in coming together and acting. Secondly, the four of them seen the role of citizens only as providers of data and information – such as the reporting in FixMyStreet. Moreover, each one repeated that despite the fact that this is low quality data it is useful in some ways. For example, Alessandro highlighted that OSM mapping in Africa is an example for a case where you accept it, because there is nothing else (really?!?) but in other places it should be used only when it is needed because of the quality issue – for example, in emergency situation when it is timely.

Apart from yet another repetition of dismissing citizen generated environmental information on the false argument of data quality (see Caren Cooper post on this issue), the views that presented in the talks helped me in crystallising some of the thoughts about the conference.

As one would expect, because the participants are civil servants, on stage and in presentations they follow the main line of the decision makers for which they work, and therefore you could hear the official line that is about efficiency, managing to do more with reduced budgets and investment, emphasising economic growth and very narrow definition of the economy that matters. Different views were expressed during breaks.

The level in which the citizens are not included in the picture was unsurprising under the mode of thinking that was express in the conference about the aims of information as ‘economic fuel’. While the tokenism of improving transparency, or even empowering citizens appeared on some slides and discussions, citizens are not explicitly included in a meaningful and significant way in the consideration of the services or in the visions of ‘government as platform’. They are reprieved as customers or service users.  The lesson that were learned in environmental policy areas in the 1980s and 1990s, which are to provide an explicit role for civil society, NGOs and social-enterprises within the process of governance and decision making are missing. Maybe this is because for a thriving civil society, there is a need for active government investment (community centres need to built, someone need to be employed to run them), so it doesn’t match the goals of those who are using austerity as a political tool.

Connected to that is the fact that although, again at the tokenism level, INSPIRE is about environmental applications, the implementation now is all driven by narrow economic argument. As with citizenship issues, environmental aspects are marginalised at best, or ignored.

The comment about data quality and some responses to my talk remind me of Ed Parsons commentary from 2008 about the UK GIS community reaction to Web Mapping 2.0/Neogeography/GeoWeb. 6 years on from that , the people that are doing the most important geographic information infrastructure project that is currently going, and it is progressing well by the look of it, seem somewhat resistant to trends that are happening around them. Within the core area that INSPIRE is supposed to handle (environmental applications), citizen science has the longest history and it is already used extensively. VGI is no longer new, and crowdsourcing as a source of actionable information is now with a decade of history and more behind it. Yet, at least in the presentations and the talks, citizens and civil-society organisations have very little role unless they are controlled and marshaled.

Despite all this critique, I have to end with a positive note. It has been a while since I’ve been in a GIS conference that include the people that work in government and other large organisations, so I did found the conference very interesting to reconnect and learn about the nature of geographic information management at this scale. It was also good to see how individuals champion use of GeoWeb tools, or the degree in which people are doing user-centred design.

The INSPIRE 2014 conference marks the middle of the implementation process of  the INSPIRE directive (Infrastructure for Spatial Information in the European Community). The directive is aimed at establishing a pan-European Spatial Data Infrastructure (SDI), and that mean lots of blueprints, pipes, machine rooms and protocols for enabling the sharing of geographic information. In GIS jargon,  blueprints translate to metadata which is a standardise way to describe a GIS dataset; pipes and machine rooms translate to data portals and servers, and the protocols translate to web services that use known standards (here you’ll have a real acronym soup of WMS, WCS, WFS and OGC). It is all aimed to allow people across Europe to share data in an efficient way so data can be found and used. In principle, at least!

This is the stuff of governmental organisations that are producing the data (national mapping agencies, government offices, statistical offices etc.) and the whole INSPIRE language and aims are targeted at the producers of the information, encouraging them to publish information about their data and share it with others. A domain of well established bureaucracies (in the positive sense of the word) and organisations that are following internal procedure in producing, quality checking and distributing their information products. At first sight, seem like the opposite world of ‘upscience‘ where sometime there are only ad-hoc structures and activities.

That is why providing a talk in the plenary session that was dedicated to Governance and Information, and aimed to “assess how INSPIRE is contributing to a more effective and participated environmental policy in Europe, and how it provides connectivity with other policies affecting our environment, society, and the economy” was of concern.  So where are the meeting points of INSPIRE and citizen science? 

One option, is to try a top-down approach and force those who collect data to provide it in INSPIRE compliant way. Of course this is destined to fail. So the next option is to force the intermediaries to do the translation – and projects such as COBWEB is doing that, although it remain to be seen what compromises will be needed. Finally, there is an option to adapt and change procedures such as INSPIRE to reflect the change in the way the world works.

To prepare the talk, I teamed with Dr Claire Ellul, who specialises in metadata (among many other things) and knows about INSPIRE more than me.

The talk started with my previous work about the three eras of environmental information, noticing the move from data by experts, and for experts (1969-1992) to by experts & the public, for experts & the public (2012 on)

As the diagrams show, a major challenges of  INSPIRE is that it is a regulation that was created on the basis of the “first era” and “second era” and it inherently assumes stable institutional practices in creating and disseminating and sharing environmental information.

Alas, the world has changed – and one particular moment of change is August 2004 when OpenStreetMap started, so by the time INSPIRE came into force, crowdsourced geographic information and citizen science became legitimate part of the landscape. These data sources are coming from a completely different paradigm of production and management, and now, with 10 years of experience in OSM and growing understanding of citizen science data, we can notice the differences in production, organisation and practices. For example, while being very viable source of geographic information, OSM still doesn’t have an office and ‘someone to call’.

Furthermore, data quality methods also require different framing for these data.  We have metadata standards and quality standards that are assuming the second era, but we need to find ways to integrate into sharing frameworks like INSPIRE the messy, noisy but also rich and important data from citizen science and crowdsourcing.

Claire provided a case study that analyses the challenges in the area of metadata in particular. The case looks at different noise mapping sources and how the can be understood. Her analysis demonstrates how the ‘producer centric’ focus of INSPIRE is challenging when trying to create systems that record and use metadata for crowdsourced information. The case study is based on our own experiences over the past 6 years and in different projects, so there is information that is explicit in the map, some in a documentation – but some that is only hidden (e.g. calibration and quality of smart phone apps).

We conclude with the message that the INSPIRE community need to start noticing these sources of data and consider how they can be integrated in the overall infrastructure.

The slides from the talk are provided below.

 

About a month ago, Francois Grey put out a suggestion that we should replace the term ‘bottom-up’  science with upscience  – do read his blog-post for a fuller explanation. I have met Francois in New York in April, when he discussed with me the ideas behind the concept, and why it is worth trying to use it.

At the end of May I had my opportunity to use the term and see how well it might work. I was invited to give a talk as part of the series Trusting the crowd: solving big problems with everyday solutions‘ at Oxford Martin School. The two previous talks in the series, about citizen science in the 19th Century and about crowdsourced journalism, set a high bar (and both are worth watching). My talk was originally titled ‘Beyond the screen: the power and beauty of ‘bottom-up’ citizen science projects’ so for the talk itself I have used ‘Beyond the screen: the power and beauty of ‘up-science’ projects‘ and it seem to go fine.

For me, the advantage of using up-science (or upscience) is in the avoidance of putting the people who are active in this form of science in the immediate disadvantage of defining themselves as ‘bottom’. For a very similar reason, I dislike the term ‘counter-mapping‘ as it puts those that are active in it in confrontational position, and therefore it can act as an additional marginalisation force. For few people, who are in favour of fights, this might make them more ‘fired up’, but for others, that might be a reason to avoid the process. Self-marginalisation is not a great position to start a struggle from.

In addition, I like the ability of upscience to be the term that catches the range of practices that Francois includes in the term, from DIY science, community based projects, civic science etc.

The content of the talk included a brief overview of the spectrum of citizen science, some of the typologies that help to make sense of them, and finally a focus on the type of practices that are part of up-science. Finally, some of the challenges and current solutions to them are covered. Below you can find a video of the talk and the discussion that followed it (which I found interesting and relevant to the discussion above).

If any of the references that I have noted in the talk is of interest, you can find them in the slide set below, which is the one that I used for the talk.

 

 

At the beginning of April, the European Citizen Science Association (ECSA) held its first Annual General Meeting in Copenhagen. In the meeting, which lasted a long afternoon and an evening many topics were covered – from membership (it’s now possible to join) to reports from the working groups. With an aim to be transparent and open ECSA has published all the material from the AGM on its website – including the slides from presentations and talks and the main points from the discussion. I have been involved in the ‘Committee Principles and standards in citizen science: sharing best practice and building capacity’ which was is led by Lucy Robinson from the UK Natural History Museum. One of the first activities that Lucy guided was the development of 10 principles of citizen science, with the aim that they can help ECSA in defining what types of projects to endorse. The tentative principles – shared between the people in the committee and now are provided on the AGM site – see her presentation. However, they are of wider interest and we are, as a group looking for comments. So the principles are:

  1. Citizen science projects involve citizens who actively contribute to scientific research. Citizens can act as contributors, collaborators, or as project leader and have a meaningful role in the research project (they are not simply research subjects).
  2. Citizen science projects have a genuine scientific question or goal, if possible resulting from discussions between citizens and professional scientists.
  3. Citizens are encouraged to participate in multiple stages of the scientific process, from developing the research question to co-designing the research process, gathering and analysing data, co-evaluating the research results and finally publishing the results for different audiences.
  4. The data gathered and/or analysed are shared and made publicly available either during or after the project, unless there are security or privacy concerns that prevent this. If the results are published academically, where possible this should be in an open access format.
  5. Participants receive feedback from the project lead on how their contribution adds to the project e.g. how their data will be used and what the research findings are. This adds both reward and opportunity to learn more about the science. The more communication and two-way engagement, the better!
  6. Citizen science activities celebrate and value the contributions of the citizen, and these are actively acknowledged in project results and publications.
  7. Citizen science programmes are characterised by mutual respect and acknowledgement of different skills and perspectives. Where possible, steering committees should integrate both scientists and citizen delegates. The scientists and organisers should be mindful of the power relations that exist within this social interaction.
  8. Citizen science projects should be inclusive. Where possible, inclusiveness should be proactive and not only reactive. Considerations of inclusiveness should include (but are not limited to) level of education, gender, age, religious belief, socio-economic factors and access to technologies.
  9. Being at the frontier between science and society, citizen science programmes have the opportunity to actively promote transdisciplinarity and links between natural and social sciences.
  10. Citizen science programmes should be evaluated for their scientific output, data quality, and the impact on participants.

The principles are open for discussion – they are not set in stone. In the discussion that followed the presentation and in a meeting of the ‘committee’ (more like sitting on the floor in a corner of the building), we explored the need for policy connection and how the aims of the project interact with these principles – for example, how applied ecological observations influence their applications. We’re still looking out for comments to develop these principles until they become part of ECSA ‘code of practice’. Comments are welcomed and will be passed to the working group. Copenhagen

Follow

Get every new post delivered to your Inbox.

Join 2,295 other followers