Today marks the publication of the report ‘crowdsourced geographic information in government‘. ReportThe report is the result of a collaboration that started in the autumn of last year, when the World Bank Global Facility for Disaster Reduction and Recovery(GFDRR)  requested to carry out a study of the way crowdsourced geographic information is used by governments. The identification of barriers and success factors were especially needed, since GFDRR invest in projects across the world that use crowdsourced geographic information to help in disaster preparedness, through activities such as the Open Data for Resilience Initiative. By providing an overview of factors that can help those that implement such projects, either in governments or in the World Bank, we can increase the chances of successful implementations. To develop the ideas of the project, Robert Soden (GFDRR) and I run a short workshop during State of the Map 2013 in Birmingham, which helped in shaping the details of project plan as well as some preliminary information gathering. The project team included myself, Vyron Antoniou, Sofia Basiouka, and Robert Soden (GFDRR). Later on, Peter Mooney (NUIM) and Jamal Jokar (Heidelberg) volunteered to help us – demonstrating the value in research networks such as COST ENERGIC which linked us.

The general methodology that we decided to use is the identification of case studies from across the world, at different scales of government (national, regional, local) and domains (emergency, environmental monitoring, education). We expected that with a large group of case studies, it will be possible to analyse common patterns and hopefully reach conclusions that can assist future projects. In addition, this will also be able to identify common barriers and challenges.

We have paid special attention to information flows between the public and the government, looking at cases where the government absorbed information that provided by the public, and also cases where two-way communication happened.

Originally, we were aiming to ‘crowdsource’  the collection of the case studies. We identified the information that is needed for the analysis by using  few case studies that we knew about, and constructing the way in which they will be represented in the final report. After constructing these ‘seed’ case study, we aimed to open the questionnaire to other people who will submit case studies. Unfortunately, the development of a case study proved to be too much effort, and we received only a small number of submissions through the website. However, throughout the study we continued to look out for cases and get all the information so we can compile them. By the end of April 2014 we have identified about 35 cases, but found clear and useful information only for 29 (which are all described in the report).  The cases range from basic mapping to citizen science. The analysis workshop was especially interesting, as it was carried out over a long Skype call, with members of the team in Germany, Greece, UK, Ireland and US (Colorado) while working together using Google Docs collaborative editing functionality. This approach proved successful and allowed us to complete the report.

You can download the full report from UCL Discovery repository

Or download a high resolution copy for printing and find much more information about the project on the Crowdsourcing and government website 

About a month ago, Francois Grey put out a suggestion that we should replace the term ‘bottom-up’  science with upscience  – do read his blog-post for a fuller explanation. I have met Francois in New York in April, when he discussed with me the ideas behind the concept, and why it is worth trying to use it.

At the end of May I had my opportunity to use the term and see how well it might work. I was invited to give a talk as part of the series Trusting the crowd: solving big problems with everyday solutions‘ at Oxford Martin School. The two previous talks in the series, about citizen science in the 19th Century and about crowdsourced journalism, set a high bar (and both are worth watching). My talk was originally titled ‘Beyond the screen: the power and beauty of ‘bottom-up’ citizen science projects’ so for the talk itself I have used ‘Beyond the screen: the power and beauty of ‘up-science’ projects‘ and it seem to go fine.

For me, the advantage of using up-science (or upscience) is in the avoidance of putting the people who are active in this form of science in the immediate disadvantage of defining themselves as ‘bottom’. For a very similar reason, I dislike the term ‘counter-mapping‘ as it puts those that are active in it in confrontational position, and therefore it can act as an additional marginalisation force. For few people, who are in favour of fights, this might make them more ‘fired up’, but for others, that might be a reason to avoid the process. Self-marginalisation is not a great position to start a struggle from.

In addition, I like the ability of upscience to be the term that catches the range of practices that Francois includes in the term, from DIY science, community based projects, civic science etc.

The content of the talk included a brief overview of the spectrum of citizen science, some of the typologies that help to make sense of them, and finally a focus on the type of practices that are part of up-science. Finally, some of the challenges and current solutions to them are covered. Below you can find a video of the talk and the discussion that followed it (which I found interesting and relevant to the discussion above).

If any of the references that I have noted in the talk is of interest, you can find them in the slide set below, which is the one that I used for the talk.

 

 

More or Less‘ is a good programme on BBC Radio 4. Regularly exploring the numbers and the evidence behind news stories and other important things, and checking if they stand out. However, the piece that was broadcast  this week about Golf courses and housing in the UK provides a nice demonstration of when not to use crowdsourced information. The issue that was discussed was how much actual space golf courses occupy, when compared to space that is used for housing. All was well, until they announced in the piece the use of clever software (read GIS) with a statistical superhero to do the analysis. Interestingly, the data that was used for the analysis was OpenStreetMap – and because the news item was about Surrey, they started doing the analysis with it.

For the analysis to be correct, you need to assume that all the building polygons in OpenStreetMap and all the Golf courses have been identified and mapped. My own guess that in Surrey, this could be the case – especially with all the wonderful work of James Rutter catalysed. However, assuming that this is the case for the rest of the country is, well, a bit fancy. I wouldn’t dare to state that OpenStreetMap is complete to such a level, without lots of quality testing which I haven’t seen. There is only the road length analysis of ITO World! and other bits of analysis, but we don’t know how complete OSM is.

While I like OpenStreetMap very much, it is utterly unsuitable for any sort of statistical analysis that works at the building level and then summing up to the country levelbecause of the heterogeneity of the data . For that sort of thing, you have to use a consistent dataset, or at least one that attempts to be consistent, and that data comes from the Ordnance Survey.

As with other statistical affairs, the core case that is made about the assertion as a whole in the rest of the clip is relevant here. First, we should question the unit of analysis (is it right to compare the footprint of a house to the area of Golf courses? Probably not) and what is to be gained by adding up individual building’s footprints to the level of the UK while ignoring roads, gardens, and all the rest of the built environment. Just because it is possible to add up every building’s footprint, doesn’t mean that you should. Second, this analysis is the sort of example of ‘Big Data’ fallacy which goes analyse first, then question (if at all) what the relationship between the data and reality.

Some ideas take long time to mature into a form that you are finally happy to share them. This is an example for such thing.

I got interested in the area of Philosophy of Technology during my PhD studies, and continue to explore it since. During this journey, I found a lot of inspiration and links to Andrew Feenberg’s work, for example, in my paper about neogeography and the delusion of democratisation. The links are mostly due to Feenberg’s attention to ‘hacking’ or appropriating technical systems to functions and activities that they are outside what the designers or producers of them thought.

In addition to Feenberg, I became interested in the work of Albert Borgmann and because he explicitly analysed GIS, dedicating a whole chapter to it in Holding on to RealityIn particular, I was intrigues by his formulation to The Device Paradigm and the notion of Focal Things and Practices which are linked to information systems in Holding on to Reality where three forms of information are presented – Natural Information, Cultural Information and Technological Information. It took me some time to see that these 5 concepts are linked, with technological information being a demonstration of the trouble with the device paradigm, while natural and cultural information being part of focal things and practices (more on these concepts below).

I first used Borgmann’s analysis as part of ‘Conversations Across the Divide‘ session in 2005, which focused on Complexity and Emergence. In a joint contribution with David O’Sullivan about ‘complexity science and Geography: understanding the limits of narratives’, I’ve used Borgmann’s classification of information. Later on, we’ve tried to turn it into a paper, but in the end David wrote a much better analysis of complexity and geography, while the attempt to focus mostly on the information concepts was not fruitful.

The next opportunity to revisit Borgmann came in 2011, for an AAG pre-conference workshop on VGI where I explored the links between The Device Paradigm, Focal Practices and VGI. By 2013, when I was invited to the ‘Thinking and Doing Digital Mapping‘ workshop that was organise by ‘Charting the Digital‘ project. I was able to articulate the link between all the five elements of Borgmann’s approach in my position paper. This week, I was able to come back to the topic in a seminar in the Department of Geography at the University of Leicester. Finally, I feel that I can link them in a coherent way.

So what is it all about?

Within the areas of VGI and Citizen Science, there is a tension between the different goals or the projects and identification of practices in terms of what they mean for the participants – are we using people as ‘platform for sensors’ or are we dealing with fuller engagement? The use of Borgmann’s ideas can help in understanding the difference. He argues that modern technologies tend to adopt the myopic ‘Device Paradigm’ in which specific interpretation of efficiency, productivity and a reductionist view of human actions are taking precedence over ‘Focal Things and Practices’ that bring people together in a way meaningful to human life. In Holding On to Reality (1999), he differentiates three types of information: natural, cultural and technological.  Natural information is defined as information about reality: for example, scientific information on the movement of the earth or the functioning of a cell.  This is information that was created in order to understand the functioning of reality.  Cultural information is information that is being used to shape reality, such as engineering design plans.  Technological information is information as reality and leads to decreased human engagement with fundamental aspects of reality.  Significantly, these categories do not relate to the common usage of the words ‘natural’, ‘cultural and ‘technological’ rather to describe the changing relationship between information and reality at different stages of socio-technical development.

When we explore general geographical information, we can see that some of it is technological information, for example SatNav and the way that communicate to the people who us them, or virtual globes that try to claim to be a representation of reality with ‘current clouds’ and all. The paper map, on the other hand, provide a conduit to the experience of hiking and walking through the landscape, and is part of cultural information.

Things are especially interesting with VGI and Citizen Science. In them, information and practices need to be analysed in a more nuanced way. In some cases, the practices can become focal to the participants – for example in iSpot where the experience of identifying a species in the field is also link to the experiences of the amateurs and experts who discuss the classification. It’s an activity that brings people together. On the other hand, in crowdsourcing projects that grab information from SatNav devices, there is a demonstration of The Device Paradigm, with the potential of reducing of meaningful holiday journey to ‘getting from A to B at the shortest time’. The slides below go through the ideas and then explore the implications on GIS, VGI and Citizen Science.

Now for the next stage – turning this into a paper…

Following the two previous assertions, namely that:

you can be supported by a huge crowd for a very short time, or by few for a long time, but you can’t have a huge crowd all of the time (unless data collection is passive)’ (original post here)

And

‘All information sources are heterogeneous, but some are more honest about it than others’  (original post here)

The third assertion is about pattern of participation. It is one that I’ve mentioned before and in some way it is a corollary of the two assertions above.

‘When looking at crowdsourced information, always keep participation inequality in mind’ 

Because crowdsourced information, either Volunteered Geographic Information or Citizen Science, is created through a socio-technical process, all too often it is easy to forget the social side – especially when you are looking at the information without the metadata of who collected it and when. So when working with OpenStreetMap data, or viewing the distribution of bird species in eBird (below), even though the data source is expected to be heterogeneous, each observation is treated as similar to other observation and assumed to be produced in a similar way.

Distribution of House Sparrow

Yet, data is not only heterogeneous in terms of consistency and coverage, it is also highly heterogeneous in terms of contribution. One of the most persistence findings from studies of various systems – for example in Wikipedia , OpenStreetMap and even in volunteer computing is that there is a very distinctive heterogeneity in contribution. The phenomena was term Participation Inequality by Jakob Nielsn in 2006 and it is summarised succinctly in the diagram below (from Visual Liberation blog) – very small number of contributors add most of the content, while most of the people that are involved in using the information will not contribute at all. Even when examining only those that actually contribute, in some project over 70% contribute only once, with a tiny minority contributing most of the information.

Participation Inequality Therefore, when looking at sources of information that were created through such process, it is critical to remember the nature of contribution. This has far reaching implications on quality as it is dependent on the expertise of the heavy contributors, on their spatial and temporal engagement, and even on their social interaction and practices (e.g. abrasive behaviour towards other participants).

Because of these factors, it is critical to remember the impact and implications of participation inequality on the analysis of the information. There will be some analysis to which it will have less impact and some where it will have major one. In either cases, it need to be taken into account.

Following the last post, which focused on an assertion about crowdsourced geographic information and citizen science I continue with another observation. As was noted in the previous post, these can be treated as ‘laws’ as they seem to emerge as common patterns from multiple projects in different areas of activity – from citizen science to crowdsourced geographic information. The first assertion was about the relationship between the number of volunteers who can participate in an activity and the amount of time and effort that they are expect to contribute.

This time, I look at one aspect of data quality, which is about consistency and coverage. Here the following assertion applies: 

‘All information sources are heterogeneous, but some are more honest about it than others’

What I mean by that is the on-going argument about authoritative and  crowdsourced  information sources (Flanagin and Metzger 2008 frequently come up in this context), which was also at the root of the Wikipedia vs. Britannica debate, and the mistrust in citizen science observations and the constant questioning if they can do ‘real research’

There are many aspects for these concerns, so the assertion deals with the aspects of comprehensiveness and consistency which are used as a reason to dismiss crowdsourced information when comparing them to authoritative data. However, at a closer look we can see that all these information sources are fundamentally heterogeneous. Despite of all the effort to define precisely standards for data collection in authoritative data, heterogeneity creeps in because of budget and time limitations, decisions about what is worthy to collect and how, and the clash between reality and the specifications. Here are two examples:

Take one of the Ordnance Survey Open Data sources – the map present themselves as consistent and covering the whole country in an orderly way. However, dig in to the details for the mapping, and you discover that the Ordnance Survey uses different standards for mapping urban, rural and remote areas. Yet, the derived products that are generalised and manipulated in various ways, such as Meridian or Vector Map District, do not provide a clear indication which parts originated from which scale – so the heterogeneity of the source disappeared in the final product.

The census is also heterogeneous, and it is a good case of specifications vs. reality. Not everyone fill in the forms and even with the best effort of enumerators it is impossible to collect all the data, and therefore statistical analysis and manipulation of the results are required to produce a well reasoned assessment of the population. This is expected, even though it is not always understood.

Therefore, even the best information sources that we accept as authoritative are heterogeneous, but as I’ve stated, they just not completely honest about it. The ONS doesn’t release the full original set of data before all the manipulations, nor completely disclose all the assumptions that went into reaching the final value. The Ordnance Survey doesn’t tag every line with metadata about the date of collection and scale.

Somewhat counter-intuitively, exactly because crowdsourced information is expected to be inconsistent, we approach it as such and ask questions about its fitness for use. So in that way it is more honest about the inherent heterogeneity.

Importantly, the assertion should not be taken to be dismissive of authoritative sources, or ignoring that the heterogeneity within crowdsources information sources is likely to be much higher than in authoritative ones. Of course all the investment in making things consistent and the effort to get universal coverage is indeed worth it, and it will be foolish and counterproductive to consider that such sources of information can be replaced as is suggest for the census or that it’s not worth investing in the Ordnance Survey to update the authoritative data sets.

Moreover, when commercial interests meet crowdsourced geographic information or citizen science, the ‘honesty’ disappear. For example, even though we know that Google Map Maker is now used in many part

s of the world (see the figure), even in cases when access to vector data is provided by Google, you cannot find out about who contribute, when and where. It is also presented as an authoritative source of information. 

Despite the risk of misinterpretation, the assertion can be useful as a reminder that the differences between authoritative and crowdsourced information are not as big as it may seem.

Looking across the range of crowdsourced geographic information activities, some regular patterns are emerging and it might be useful to start notice them as a way to think about what is possible or not possible to do in this area. Since I don’t like the concept of ‘laws’ – as in Tobler’s first law of geography which is  stated as ‘Everything is related to everything else, but near things are more related than distant things.’ – I would call them assertions. There is also something nice about using the word ‘assertion’ in the context of crowdsourced geographic information, as it echos Mike Goodchild’s differentiation between asserted and authoritative information. So not laws, just assertions or even observations.

The first one, is rephrasing a famous quote:

you can be supported by a huge crowd for a very short time, or by few for a long time, but you can’t have a huge crowd all of the time (unless data collection is passive)’

So the Christmas Bird Count can have tens of thousands of participants for a short time, while the number of people who operate weather observation stations will be much smaller. Same thing is true for OpenStreetMap – for crisis mapping, which is a short term task, you can get many contributors  but for the regular updating of an area under usual conditions, there will be only few.

The exception for the assertion is the case for passive data collection, where information is collected automatically through the logging of information from a sensor – for example the recording of GPS track to improve navigation information.

OSM Haiyan

The Consumers’ Association Which? magazine  is probably not the first place to turn to when you look for usability studies. Especially not if you’re interested in computer technology – for that, there are sources such as PC Magazine on the consumer side, and professional magazines such as Interactions from Association for Computing Machinery (ACM) Special Interest Group on Computer-Human Interaction (SIGCHI).

And yet…

Over the past few years, Which? is reviewing, testing and recommending Satnavs (also known Personal Navigation Devices – PNDs). Which? is an interesting case because it reaches over 600,000 households and because of the level of trust that it enjoys. If you look at their methodology for testing satnavs , you’ll find that it does resemble usability testing – click on the image to see the video from Which? about their methodology. The methodology is more about everyday use and the opinion of the assessors seems to play an important role.

Link to Which Satnav video

Professionals in geographical information science or human-computer interaction might dismiss the study as unrepresentative, or not fitting their ways of evaluating technologies, but we need to remember that Which? is providing an insight into the experience of the people who are outside our usual professional and social context – people who go to a high street shop or download an app and start using it straightaway. Therefore, it’s worth understanding how they review the different systems and what the experience is like when you try to think like a consumer, with limited technical knowledge and understanding of maps.

There are also aspects that puncture the ‘filter bubble‘ of geoweb people – Google Maps are now probably the most used maps on the web, but the satnav application using Google Maps was described as ‘bad, useful for getting around on foot, but traffic information and audio instructions are limited and there’s no speed limit or speed camera data‘. Waze, the crowdsourced application received especially low marks and the magazine noted that it ‘lets users share traffic and road info, but we found its routes and maps are inaccurate and audio is poor‘ (both citations from Which? Nov 2012, p. 38). It is also worth reading their description of OpenStreetMap when discussing map updates, and also the opinions on the willingness to pay for map updates.

There are many ways to receive information about the usability and the nature of interaction with geographical technologies, and some of them, while not traditional, can provide useful insights.

The Spatial Data Infrastructure Magazine (SDIMag.com) is a relatively new e-zine dedicated to the development of spatial  data infrastructures around the world. Roger Longhorn, the editor of the magazine, conducted an email interview with me, which is now published.

In the interview, we are covering the problematic terminology used to describe a wider range of activities; the need to consider social and technical aspects as well as goals of the participants; and, of course, the role of the information that is produced through crowdsourcing, citizen science, VGI with spatial data infrastructures.

The full interview can be found here.

 

At the State of the Map (EU) 2011 conference that was held in Vienna from 15-17 July, I gave a keynote talk on the relationships between the OpenStreetMap  (OSM) community and the GIScience research community. Of course, the relationships are especially important for those researchers who are working on volunteered Geographic Information (VGI), due to the major role of OSM in this area of research.

The talk included an overview of what researchers have discovered about OpenStreetMap over the 5 years since we started to pay attention to OSM. One striking result is that the issue of positional accuracy does not require much more work by researchers. Another important outcome of the research is to understand that quality is impacted by the number of mappers, or that the data can be used with confidence for mainstream geographical applications when some conditions are met. These results are both useful, and of interest to a wide range of groups, but there remain key areas that require further research – for example, specific facets of quality, community characteristics  and how the OSM data is used.

Reflecting on the body of research, we can start to form a ‘code of engagement’ for both academics and mappers who are engaged in researching or using OpenStreetMap. One such guideline would be  that it is both prudent and productive for any researcher do some mapping herself, and understand the process of creating OSM data, if the research is to be relevant and accurate. Other aspects of the proposed ‘code’ are covered in the presentation.

The talk is also available as a video from the TU Wien Matterhorn server

 

 

Follow

Get every new post delivered to your Inbox.

Join 2,228 other followers