At the end of June, I noticed a tweet about new words in Oxford English Dictionary (OED):

I like dictionary definitions, as they help to clarify things, and OED is famous for the careful editing and finding how a term is used before adding it. Being in the OED is significant for Citizen Science, as it is a recognised “proper” term. At the same time, the way that OED define citizen science, and their careful work on finding out when it was first used can help in noticing some aspects. This is how.

Here is the definition, in all its glory:

citizen science n. scientific work undertaken by members of the general public, often in collaboration with or under the direction of professional scientists and scientific institutions.

1989   Technol. Rev. Jan. 12/4   Audubon involves 225 society members from all 50 states in a ‘citizen science’ program… Volunteers collect rain samples, test their acidity levels, and report the results to Audubon headquarters.
2002   M. B. Mulder & P. Coppolillo Conservation xi. 295/1   Citizen science has the potential to strengthen conservation practice in the developing world.
2012   M. Nielsen Reinventing Discov. vii. 151   Citizen science can be a powerful way both to collect and also to analyze enormous data sets.

citizen scientist n.  (a) a scientist whose work is characterized by a sense of responsibility to serve the best interests of the wider community (now rare);  (b) a member of the general public who engages in scientific work, often in collaboration with or under the direction of professional scientists and scientific institutions; an amateur scientist.

1912   Manch. Guardian 11 Sept. 4/2   Trafford, thus serenely established, should..have returned to his researches with a new confidence and content and become a noble citizen-scientist.
1936   Headmaster Speaks 65   Could not Science..turn out a race of citizen scientists who do not make an absolute religion of the acquisition of new scientific knowledge however useless or harmful it may be?
1949   Collier’s 16 July 74/3   By 1930 most citizen-scientists had perfected a technique which brought gin to its peak of flavor and high-octane potency five minutes after the ingredients had been well mixed.
1979   New Scientist 11 Oct. 105/2   The ‘citizen-scientist’, the amateur investigator who in the past contributed substantially to the development of science through part-time dabbling.
2013   G. R. Hubbell Sci. Astrophotogr. xiii. 233   A citizen scientist in the astronomical field has a unique opportunity because astronomy is a wholly observational science.

Dictionaries are more interesting than they might seem. Here are 3 observations on this new definition:

First, the core definition of ‘citizen science’ is interestingly inclusive, so a community based air quality monitoring to volunteers bird surveys and running climate model on your computer at home are all included. This makes the definition useful across projects and types of activities.

Second, the ‘citizen scientist’ is capturing two meanings. The first meaning is noteworthy, as it is the one falls well within Alan Irwin’s way of describing citizen science, or in Jack Stilgoe’s pamphlet that describe citizen scientists. Notice that this meaning is not the common one to describe who is a citizen scientists, but arguably, scientists that are active in citizen science usually become such citizen scientists (sorry for the headache!).

Third, it’s always fun to track down the citations that OED use, as they are trying to find the first use of phrase. So let’s look at the late 20th century citations for ‘citizen science’ and ‘citizen scientist’ (the one from the early 20th century are less representative of current science in my view).

The first use of ‘citizen science’ in the meaning that we’re now using is traced to an article in MIT Technology Review from January 1989. The article ‘Lab for the Environment’ tell the story of community based laboratories to explore environmental hazards, laboratory work by Greenpeace, and Audubon recruitment of volunteers in a ‘citizen science’ programme. The part that describes citizen science is provided below (click here to get to the magazine itself). Therefore, groups such as the Public Laboratory for Open Technology and Science are linked directly to this use of citizen science. 

MIT Technology Review 1989

Just as interesting is the use of ‘citizen scientist’. It was used 10 years earlier, in an article in New Scientist that discussed enthusiasts who are researching Unidentified Flying Objects (UFO) and identified ‘ufology’ as a field of study for these people. While the article is clearly mocking the ufologists as unscientific, it does mention, more or less in passing, the place of citizen-scientists, which is “all but eliminated” by the late 1970s (click here to see the original magazine). This resonate with many of the narrative about how citizen science disappeared in the 20th century and is reappearing now. 

NewScientist1979-Details

 

If you would like to use these original references to citizen science and citizen scientists, here the proper reference (I’ll surely look out for an opportunity to do so!)

Kerson, R., 1989, Lab for the Environment, MIT Technology Review, 92(1), 11-12

Oberg, J., 1979, The Failure of the ‘Science’ of Ufology, New Scientist, 84(1176), 102-105

 


 

Thanks to Rick Bonney who asked some questions about the definition that led to this post!

What is Science?

6 September, 2014

When you look at the discussions that are emerging around the term ‘Citizen Science‘, you can often find discussion about the ‘Citizen‘ part of the term. What about the ‘Science‘ part? This is something that once you start being involved in Citizen Science you are forced to contemplate. As Francois Grey like to note ‘Science is too important to be left out to scientists‘ and we need to find a way to make it more inclusive as a process and practice. Sometime, Citizen Science challenges ‘established’ science and protocols. This can be about small things – such as noticing that diffusion tubes are installed at 2.5m (while the area of real concern is 1-1.5m), or bigger things, such as noticing that a lot of noise measurement is about what is possible to measure (sound) and avoiding what is difficult (noise). Even more challenging is the integration of local, lay and traditional knowledge within the citizen science framework with scientific knowledge. In short, there is value in considering what we mean by ‘science’.

UCL iGEM team public biobrick

UCL iGEM team public biobrick

For me, the challenge that evolved was ‘how can we have a definition of science that recognises that it’s a powerful form of knowledge, while allowing other forms of knowledge to work with it?‘. After experimenting with different ideas in the past year, I ended with the following, directly paraphrasing from the famous quote* from Winston Churchill about democracy as the least worst form of government. So the current, work in progress, definition that I’m using is the following:

“Science is the least worst method to accumulate human knowledge about the natural world (and it need to work, in a respectful way, with other forms of knowledge)”

What I am trying to do with this definition is first to recognise that knowledge is produced collaboratively and, ideally, in a democratic process. For that, the original form of the phrase is useful. Second, I wanted to note that science is not infallible but meandering, getting into blind alleys and all the rest, which the ‘least worst’ is capturing better than ‘the best’. Third, it is allowing the recognition that it is a very effective and powerful form of human knowledge.

Does it work? Is it suitable?

 


* I always like to find the correct source, and if you look at the Hansard, you’ll see that Churchill was more forthright and said: “Many forms of Government have been tried, and will be tried in this world of sin and woe. No one pretends that democracy is perfect or all-wise. Indeed, it has been said that democracy is the worst form of Government except all those other forms that have been tried from time to time;”. Now that I know that, it’s tempting to try and replace democracy with science and government with knowledge…

The 3 days of the Royal Geographical Society (with IBG) or RGS/IBG  annual conference are always valuable, as they provide an opportunity to catch up with the current themes in (mostly human) Geography. While I spend most of my time in an engineering department, I also like to keep my ‘geographer identity’ up to date as this is the discipline that I feel most affiliated with.

Since last year’s announcement that the conference will focus on ‘Geographies of Co-Production‘ I was looking forward to it, as this topic relate many themes of my research work. Indeed, the conference was excellent – from the opening session to the last one that I attended (a discussion about the co-production of co-production).

Just before the conference, the participatory geographies research group run a training day, in which I run a workshop on participatory mapping. It was good to see the range of people that came to the workshop, many of them in early stages of their research career who want to use participatory methods in their research.

In the opening session on Tuesday’s night, Uma Kothari raised a very important point about the risk of institutions blaming the participants if a solution that was developed with them failed. There is a need to ensure that bodies like the World Bank or other funders don’t escape their responsibilities and support as a result of participatory approaches. Another excellent discussion came from Keri Facer who analysed the difficulties of interdisciplinary research based on her experience from the ‘connected communities‘ project. Noticing and negotiating the multiple dimensions of differences between research teams is critical for the co-production of knowledge.

By the end of this session, and as was demonstrated throughout the conference, it became clear that there are many different notions of ‘co-production of knowledge’ – sometime it is about two researchers working together, for others it is about working with policy makers or civil servants, and yet for another group it means to have an inclusive knowledge production with all people that can be impacted by a policy or research recommendation. Moreover, there was even a tension between the type of inclusiveness – should it be based on simple openness (‘if you want to participate, join’), or representation of people within the group, or should it be a active effort for inclusiveness? The fuzziness of the concept proved to be very useful as it led to many discussions about ‘what co-production means?’, as well as ‘what co-production does?’.

Two GIS education sessions were very good (see Patrick’s summery on the ExCiteS blog) and I found Nick Tate and Claire Jarvis discussion about the potential of virtual community of practice (CoP) for GIScience professionals especially interesting. An open question that was left at the end of the session was about the value of generic expertise (GIScience) or the way they are used in a specific area. In other words, do we need a CoP to share the way we use the tools and methods or is it about situated knowledge within a specific domain? 

ECR panel (source: Keri Facer)

ECR panel (source: Keri Facer)

The Chair Early Career panel was, for me, the best session in the conferenceMaria Escobar-TelloNaomi Millner, Hilary Geoghegan and Saffron O’Neil discussed their experience in working with policy makers, participants, communities and universities. Maria explored the enjoyment of working at the speed of policy making in DEFRA, which also bring with it major challenges in formulating and doing research. Naomi discussed productive margins project which involved redesigning community engagement, and also noted what looks like very interesting reading: the e-book Problems of Participation: Reflections on Authority, Democracy, and the Struggle for Common Life. Hilary demonstrated how she has integrated her enthusiasm for enthusiasm into her work, while showing how knowledge is co-produced at the boundaries between amateurs and professionals, citizens and scientists. Hilary recommended another important resource – the review Towards co-production in research with communities (especially the diagram/table on page 9). Saffron completed the session with her work on climate change adaptation, and the co-production of knowledge with scientists and communities. Her research on community based climate change visualisation is noteworthy, and suggest ways of engaging people through photos that they take around their homes.

In another session which focused on mapping, the Connected Communities project appeared again, in the work of Chris Speed, Michelle Bastian & Alex Hale on participatory local food mapping in Liverpool and the lovely website that resulted from their project, Memories of Mr Seel’s Garden. It is interesting to see how methods travel across disciplines and to reflect what insights should be integrated in future work (while also resisting a feeling of ‘this is naive, you should have done this or that’!).

On the last day of the conference, the sessions on ‘the co-production of data based living‘ included lots to contemplate on. Rob Kitchin discussion and critique of smart-cities dashboards, highlighting that data is not-neutral, and that it is sometime used to decontextualised the city from its history and exclude non-quantified and sensed forms of knowledge (his new book ‘the data revolution’ is just out). Agnieszka Leszczynski continued to develop her exploration of the mediation qualities of techno-social-spatial interfaces leading to the experience of being at a place intermingled with the experience of the data that you consume and produce in it. Matt Wilson drawn parallel between the quantified self and the quantified city, suggesting the concept of ‘self-city-nation’ and the tensions between statements of collaboration and sharing within proprietary commercial systems that aim at extracting profit from these actions. Also interesting was Ewa Luger discussion of the meaning of ‘consent’ within the Internet of Things project ‘Hub of All Things‘ and the degree in which it is ignored by technology designers.

The highlight of the last day for me was the presentation by Rebecca Lave on Critical Physical Geography‘. This is the idea that it is necessary to combine scientific understanding of hydrology and ecology with social theory. It is also useful in alerting geographers who are dealing with human geography to understand the physical conditions that influence life in specific places. This approach encourage people who are involved in research to ask questions about knowledge production, for example social justice aspects in access to models when corporations can have access to weather or flood models that are superior to what is available to the rest of society.

Overall, Wendy Larner decision to focus the conference on co-production of knowledge was timely and created a fantastic conference. Best to complete this post with her statement on the RGS website:

The co-production of knowledge isn’t entirely new and Wendy is quick to point out that themes like citizen science and participatory methods are well established within geography. “What we are now seeing is a sustained move towards the co-production of knowledge across our entire discipline.”

 

As far as I can tell, Nelson et al. 2006 ‘Towards development of a high quality public domain global roads database‘ and Taylor & Caquard 2006 Cybercartography: Maps and Mapping in the Information Era are the first peer review papers that mention OpenStreetMap. Since then, OpenStreetMap received plenty of academic attention. More ‘conservative’ search engines such as ScienceDirect or Scopus find 286 and 236 peer review papers that mention the project (respectively). The ACM digital library finds 461 papers in the areas that are relevant to computing and electronics, while Microsoft Academic Research find only 112. Google Scholar lists over 9000 (!). Even with the most conservative version from Microsoft, we can see an impact on fields ranging from social science to engineering and physics. So lots to be proud about as a major contribution to knowledge beyond producing maps.

Michael Goodchild, in his 2007 paper that started the research into Volunteered Geographic Information (VGI), mentioned OpenStreetMap (OSM), and since then there is a lot of conflation between OSM and VGI. In some recent papers you can find statements such as ‘OpenstreetMap is considered as one of the most successful and popular VGI projects‘ or ‘the most prominent VGI project OpenStreetMap‘ so at some level, the boundary between the two is being blurred. I’m part of the problem – for example, in the title of my 2010 paper ‘How good is volunteered geographical information? A comparative study of OpenStreetMap and Ordnance Survey datasetsHowever, the more I was thinking about it, the more I am uncomfortable with this equivalence. I would think that the recent line from Neis & Zielstra (2013) is more accurate: ‘One of the most utilized, analyzed and cited VGI-platforms, with an increasing popularity over the past few years, is OpenStreetMap (OSM)‘. I’ll explain why.

Let’s look at the whole area of OpenStreetMap studies. Over the past decade, several types of research papers emerged.

There is a whole set of research projects that use OSM data because it’s easy to use and free to access (in computer vision or even string theory). These studies are not part of ‘OSM studies’ or VGI, as for them, this is just data to be used.

Edward Betts. CC-By-SA 2.0 via Wikimedia Commons

Second, there are studies about OSM data: quality, evolution of objects and other aspects from researchers such as Peter Mooney, Pascal Neis, Alex Zipf  and many others.

Thirdly, there are studies that also look at the interactions between the contribution and the data – for example, in trying to infer trustworthiness.

Fourth, there are studies that look at the wider societal aspects of OpenStreetMap, with people like Martin Dodge, Chris Perkins, and Jo Gerlach contributing in interesting discussions.

Finally, there are studies of the social practices in OpenStreetMap as a project, with the work of Yu-Wei Lin, Nama Budhathoki, Manuela Schmidt and others.

[Unfortunately, due to academic practices and publication outlets, a lot of these papers are locked behind paywalls, but this is another issue... ]

In short, this is a significant body of knowledge about the nature of the project, the implications of what it produces, and ways to understand the information that emerge from it. Clearly, we now know that OSM produce good data and know about the patterns of contribution. What is also clear that the many of these patterns are specific to OSM. Because of the importance of OSM to so many applications areas (including illustrative maps in string theory!) these insights are very important. Some of them are expected to be also present in other VGI projects (hence my suggestions for assertions about VGI) but this need to be done carefully, only when there is evidence from other projects that this is the case. In short, we should avoid conflating VGI and OSM.

Today, OpenStreetMap celebrates 10 years of operation as counted from the date of registration. I’ve heard about the project when it was in early stages, mostly because I knew Steve Coast when I was studying for my Ph.D. at UCL.  As a result, I was also able to secured the first ever research grant that focused on OpenStreetMap (and hence Volunteered Geographic Information – VGI) from the Royal Geographical Society in 2005. A lot can be said about being in the right place at the right time!

OSM Interface, 2006 (source: Nick Black)

OSM Interface, 2006 (source: Nick Black)

Having followed the project during this decade, there is much to reflect on – such as thinking about open research questions, things that the academic literature failed to notice about OSM or the things that we do know about OSM and VGI because of the openness of the project. However, as I was preparing the talk for the INSPIRE conference, I was starting to think about the start dates of OSM (2004), TomTom Map Share (2007), Waze (2008), Google Map Maker (2008).  While there are conceptual and operational differences between these projects, in terms of ‘knowledge-based peer production systems’ they are fairly similar: all rely on large number of contributors, all use both large group of contributors who contribute little, and a much smaller group of committed contributors who do the more complex work, and all are about mapping. Yet, OSM started 3 years before these other crowdsourced mapping projects, and all of them have more contributors than OSM.

Since OSM is described  as ‘Wikipedia of maps‘, the analogy that I was starting to think of was that it’s a bit like a parallel history, in which in 2001, as Wikipedia starts, Encarta and Britannica look at the upstart and set up their own crowdsourcing operations so within 3 years they are up and running. By 2011, Wikipedia continues as a copyright free encyclopedia with sizable community, but Encarta and Britannica have more contributors and more visibility.

Knowing OSM closely, I felt that this is not a fair analogy. While there are some organisational and contribution practices that can be used to claim that ‘it’s the fault of the licence’ or ‘it’s because of the project’s culture’ and therefore justify this, not flattering, analogy to OSM, I sensed that there is something else that should be used to explain what is going on.

TripAdvisor FlorenceThen, during my holiday in Italy, I was enjoying the offline TripAdvisor app for Florence, using OSM for navigation (in contrast to Google Maps which are used in the online app) and an answer emerged. Within OSM community, from the start, there was some tension between the ‘map’ and ‘database’ view of the project. Is it about collecting the data so beautiful maps or is it about building a database that can be used for many applications?

Saying that OSM is about the map mean that the analogy is correct, as it is very similar to Wikipedia – you want to share knowledge, you put it online with a system that allow you to display it quickly with tools that support easy editing the information sharing. If, on the other hand, OSM is about a database, then OSM is about something that is used at the back-end of other applications, a lot like DBMS or Operating System. Although there are tools that help you to do things easily and quickly and check the information that you’ve entered (e.g. displaying the information as a map), the main goal is the building of the back-end.

Maybe a better analogy is to think of OSM as ‘Linux of maps’, which mean that it is an infrastructure project which is expected to have a lot of visibility among the professionals who need it (system managers in the case of Linux, GIS/Geoweb developers for OSM), with a strong community that support and contribute to it. The same way that some tech-savvy people know about Linux, but most people don’t, I suspect that TripAdvisor offline users don’t notice that they use OSM, they are just happy to have a map.

The problem with the Linux analogy is that OSM is more than software – it is indeed a database of information about geography from all over the world (and therefore the Wikipedia analogy has its place). Therefore, it is somewhere in between. In a way, it provide a demonstration for the common claim in GIS circles that ‘spatial is special‘. Geographical information is infrastructure in the same way that operating systems or DBMS are, but in this case it’s not enough to create an empty shell that can be filled-in for the specific instance, but there is a need for a significant amount of base information before you are able to start building your own application with additional information. This is also the philosophical difference that make the licensing issues more complex!

In short, both Linux or Wikipedia analogies are inadequate to capture what OSM is. It has been illuminating and fascinating to follow the project over its first decade,  and may it continue successfully for more decades to come.

The Vespucci initiative has been running for over a decade, bringing together participants from wide range of academic backgrounds and experiences to explore, in a ‘slow learning’ way, various aspects of geographic information science research. The Vespucci Summer Institutes are week long summer schools, most frequently held at Fiesole, a small town overlooking Florence. This year, the focus of the first summer institute was on crowdsourced geographic information and citizen science.

101_0083The workshop was supported by COST ENERGIC (a network that links researchers in the area of crowdsourced geographic information, funded by the EU research programme), the EU Joint Research Centre (JRC), Esri and our Extreme Citizen Science research group. The summer school included about 30 participants and facilitators that ranged from master students students that are about to start their PhD studies, to established professors who came to learn and share knowledge. This is a common feature of Vespucci Institute, and the funding from the COST network allowed more early career researchers to participate.

Apart from the pleasant surrounding, Vespucci Institutes are characterised by the relaxed, yet detailed discussions that can be carried over long lunches and coffee breaks, as well as team work in small groups on a task that each group present at the end of the week. Moreover, the programme is very flexible so changes and adaptation to the requests of the participants and responding to the general progression of the learning are part of the process.

This is the second time that I am participating in Vespucci Institutes as a facilitator, and in both cases it was clear that participants take the goals of the institute seriously, and make the most of the opportunities to learn about the topics that are explored, explore issues in depth with the facilitators, and work with their groups beyond the timetable.

101_0090The topics that were covered in the school were designed to provide an holistic overview of geographical crowdsourcing or citizen science projects, especially in the area where these two types of activities meet. This can be when a group of citizens want to collect and analyse data about local environmental concerns, or oceanographers want to work with divers to record water temperature, or when details that are emerging from social media are used to understand cultural differences in the understanding of border areas. These are all examples that were suggested by participants from projects that they are involved in. In addition, citizen participation in flood monitoring and water catchment management, sharing information about local food and exploring data quality of spatial information that can be used by wheelchair users also came up in the discussion. The crossover between the two areas provided a common ground for the participants to explore issues that are relevant to their research interests. 

2014-07-07 15.37.55The holistic aspect that was mentioned before was a major goal for the school – so to consider the tools that are used to collect information, engaging and working with the participants, managing the data that is provided by the participants and ensuring that it is useful for other purposes. To start the process, after introducing the topics of citizen science and volunteered geographic information (VGI), the participants learned about data collection activities, including noise mapping, OpenStreetMap contribution, bird watching and balloon and kite mapping. As can be expected, the balloon mapping raised a lot of interest and excitement, and this exercise in local mapping was linked to OpenStreetMap later in the week.

101_0061The experience with data collection provided the context for discussions about data management and interoperability and design aspects of citizen science applications, as well as more detailed presentations from the participants about their work and research interests. With all these details, the participants were ready to work on their group task: to suggest a research proposal in the area of VGI or Citizen Science. Each group of 5 participants explored the issues that they agreed on – 2 groups focused on a citizen science projects, another 2 focused on data management and sustainability and finally another group explored the area of perception mapping and more social science oriented project.

Some of the most interesting discussions were initiated at the request of the participants, such as the exploration of ethical aspects of crowdsourcing and citizen science. This is possible because of the flexibility in the programme.

Now that the institute is over, it is time to build on the connections that started during the wonderful week in Fiesole, and see how the network of Vespucci alumni develop the ideas that emerged this week.

 

Today marks the publication of the report ‘crowdsourced geographic information in government‘. ReportThe report is the result of a collaboration that started in the autumn of last year, when the World Bank Global Facility for Disaster Reduction and Recovery(GFDRR)  requested to carry out a study of the way crowdsourced geographic information is used by governments. The identification of barriers and success factors were especially needed, since GFDRR invest in projects across the world that use crowdsourced geographic information to help in disaster preparedness, through activities such as the Open Data for Resilience Initiative. By providing an overview of factors that can help those that implement such projects, either in governments or in the World Bank, we can increase the chances of successful implementations. To develop the ideas of the project, Robert Soden (GFDRR) and I run a short workshop during State of the Map 2013 in Birmingham, which helped in shaping the details of project plan as well as some preliminary information gathering. The project team included myself, Vyron Antoniou, Sofia Basiouka, and Robert Soden (GFDRR). Later on, Peter Mooney (NUIM) and Jamal Jokar (Heidelberg) volunteered to help us – demonstrating the value in research networks such as COST ENERGIC which linked us.

The general methodology that we decided to use is the identification of case studies from across the world, at different scales of government (national, regional, local) and domains (emergency, environmental monitoring, education). We expected that with a large group of case studies, it will be possible to analyse common patterns and hopefully reach conclusions that can assist future projects. In addition, this will also be able to identify common barriers and challenges.

We have paid special attention to information flows between the public and the government, looking at cases where the government absorbed information that provided by the public, and also cases where two-way communication happened.

Originally, we were aiming to ‘crowdsource’  the collection of the case studies. We identified the information that is needed for the analysis by using  few case studies that we knew about, and constructing the way in which they will be represented in the final report. After constructing these ‘seed’ case study, we aimed to open the questionnaire to other people who will submit case studies. Unfortunately, the development of a case study proved to be too much effort, and we received only a small number of submissions through the website. However, throughout the study we continued to look out for cases and get all the information so we can compile them. By the end of April 2014 we have identified about 35 cases, but found clear and useful information only for 29 (which are all described in the report).  The cases range from basic mapping to citizen science. The analysis workshop was especially interesting, as it was carried out over a long Skype call, with members of the team in Germany, Greece, UK, Ireland and US (Colorado) while working together using Google Docs collaborative editing functionality. This approach proved successful and allowed us to complete the report.

You can download the full report from UCL Discovery repository

Or download a high resolution copy for printing and find much more information about the project on the Crowdsourcing and government website 

Follow

Get every new post delivered to your Inbox.

Join 2,295 other followers